Forgot password?
 Register account
View 1250|Reply 0

[数论] SOP20——$k$-完备

[Copy link]
业余的业余 posted 2020-7-4 21:16 |Read mode
已知 $n$ 为正整数,若一个数列包含模 $n^k$ 的所有剩余类,则称这个数列是 $k$-完备的. 设 $Q(x)$ 是一个整系数多项式。记 $Q^1(x)=Q(x), $ 当 $k\geqslant 2$ 时,我们定义 $Q^k(x)=Q\big(Q^{k-1}(x)\big).$


证明:若数列\[0,Q(0), Q^2(0), Q^3(0),\cdots\] 是 $2018$-完备的, 则对任意正整数 $k$, 它是 $k$-完备的。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:56 GMT+8

Powered by Discuz!

Processed in 0.015379 second(s), 21 queries

× Quick Reply To Top Edit