Forgot password?
 Register account
View 2302|Reply 2

[函数] 设x∈[0,2].求函数 $f(x) = 4/(5 - x ^ 2) + 4/(1 + 3x) + 1/(3 - x)$的取值范围

[Copy link]

21

Threads

23

Posts

242

Credits

Credits
242

Show all posts

chudengshuxue Posted 2020-7-6 17:26 |Read mode
Last edited by hbghlyj 2025-3-19 17:58设 $x \in[0,2]$.求函数 $f(x)=\frac{4}{5-x^2}+\frac{4}{1+3 x}+\frac{1}{3-x}$ 的取值范围.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-7-6 23:57
最小值可以切线放缩\[\frac{4}{5-x^2}\geq \frac{1}{4} \left(x^2-1\right)+1\]\[\frac{4}{3 x+1}\geq 1-\frac{3 (x-1)}{4}\]\[\frac{1}{3-x}\geq \frac{x-1}{4}+\frac{1}{2}\],加得\[f(x)\ge\frac{1}{4} \left(x^2-1\right)+\frac{x-1}{4}-\frac{3 (x-1)}{4}+\frac{1}{2}+1+1=\frac{1}{4} (x-1)^2+\frac{5}{2}\ge\frac52\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-6 23:57
先简略说说最大值,对于 `1/(a+bx)` 来说,只要分母恒为正,就一定是下凸的,而 `4/(5-x^2)=2/(5-\sqrt5x)+2/(5+\sqrt5x)`,所以同样也是下凸,即 `f(x)` 的三项都下凸,所以 `f(x)` 下凸,因此最大值要么在 `x=0` 取要么在 `x=2` 取,代入发现 `x=2` 大。

至于最小值,先蒙 `x=1` 取,因为这时结果最简单,而且还刚好满足 CS 的比例,果断 CS 之:
\[f(x)\geqslant\frac{(2+2+1)^2}{5-x^2+1+3x+3-x}=\frac{25}{10-(1-x)^2}\geqslant\frac52,\]取等正是 `x=1`,完事。

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit