第15讲:极点与极线的性质 极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途. 定义:已知曲线G:ax2+bxy+cy2+dx+ey+f=0,则称点P(x0,y0)和直线l:ax0x+b$\frac{y_{0} {x}+x_{0} {y}}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+f=0是曲线G的一对极点与极线,点P称为直线l关于曲线G的极点;直线l称为点P关于曲线G的极线.称点P与直线l有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”. 特别地,当点P在曲线G上时,点P关于曲线G的极线是曲线G在点P处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点. [位置关系]:已知点P关于圆锥曲线G的极线是直线l,则三者的位置关系是:①若点P在曲线G上,则直线l是曲线G在点P处的切线;②若点P在曲线G外,则直线l是由点P向曲线G引两条切线的切点弦;③若点P在曲线G内,则直线l是经过点P的曲线G的弦的两端点处的切线交点轨迹.如图:
证明:设圆锥曲线G:ax2+bxy+cy2+2dx+2ey+f=0,点P(xp,yp),Q(xQ,yQ),则点P、Q关于曲线G的极线方程分别为p:axpx+b$\frac{y_{p} x+x_{m} y}{2}$+cypy+d$\frac{x+x_{p}}{2}$+e$\frac{y+y_{p}}{2}$+f=0,q:axQx+b$\frac{y_{q} x+x_{q} y}{2}$+cyQy+d$\frac{x+x_{Q}}{2}$+e$\frac{y+y_{Q}}{2}$+f=0,则点P的极线通过点Q$\Leftrightarrow$axpxQ+b$\frac{y_{p} x_{Q}+x_{p} y_{Q}}{2}$+cypyQ+d$\frac{x_{q}+x_{p}}{2}$+e$\frac{y_{q}+y_{p}}{2}$+f=0$\Leftrightarrow$点P(xp,yp)在直线q:axQx+b$\frac{y_{q} x+x_{q} y}{2}$+cyQy+d$\frac{x+x_{Q}}{2}$+e$\frac{y+y_{Q}}{2}$+f=0上$\Leftrightarrow$点Q的极线也通过点P. 推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线; 证明:设两点A、B连线的极点是P,即点P的极线经过点A、B,由配极原则知点A、B的极线均过点P,即点P是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线. 推论2(共点共线):共线点的极线必共点;共点线的极点必共线. 证明:设点A、B均在直线l上,直线l对应的极点为P,由配极原则知点A、B的极线均过点P,即点A、B的极线必共点;同理可证:共点线的极点必共线. 推论3(中点性质):若圆锥曲线G过点P的弦AB平行于点P的极线,则点P是弦AB的中点. 证明:设P(x0,y0),曲线G:ax2+bxy+cy2+2dx+2ey+f=0,则点P的极线方程:ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+f=0,故可设AB:ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+λ=0,由点P(x0,y0)在直线AB上$\Rightarrow$ax02+bx0y0+cy02+2dx0+2ey0+λ=0$\Rightarrow$λ=-(ax02+bx0y0+cy02+2dx0+2ey0)$\Rightarrow$直线AB:ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$=ax02+bx0y0+cy02+2dx0+2ey0$\Rightarrow$ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+f=ax02+bx0y0+cy02+2dx0+2ey0+f,而该直线为以为P中点的中点弦方程,即点P是弦AB的中点. [比例定理]:若过点P(x0,y0)的直线l与曲线G:ax2+bxy+cy2+dx+ey+f=0相交于A、B两点,与直线:ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+ cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:$\left\{\begin{array}{l}x=x_{0}+t \cos \theta \\ y=y_{0}+t \sin \theta\end{array}\right.$(t为参数),代入ax0x+b$\frac{y_{0} x+x_{0} y}{2}$+cy0y+d$\frac{x+x_{0}}{2}$+e$\frac{y+y_{0}}{2}$+f=0得:(2ax0cosθ+bx0sinθ+by0cosθ+2cy0sinθ)t+2(ax02+bx0y0+cy02+dx0+ey0+f)=0$\Rightarrow$t0=-2$\frac{a x_{0}^{2}+b x_{0} y_{0}+c y_{0}^{2}+d x_{0}+e y_{0}+f}{2 a x_{0} \cos \theta+b x_{0} \sin \theta+b y_{0} \cos \theta+2 c y_{0} \sin \theta}$;代入ax2+bxy+ cy2+2dx+2ey+f=0得:(acos2θ+bcosθsinθ+csin2θ)t2+(2ax0cosθ+bx0sinθ+by0cosθ+2cy0sinθ)t+(ax02+bx0y0+cy02+dx0 +ey0+f)=0$\Rightarrow$t1+t2=-$\frac{2 a x_{0} \cos \theta+b x_{0} \sin \theta+b y_{0} \cos \theta+2 c y_{0} \sin \theta}{a \cos ^{2} \theta+b \sin \theta \cos \theta+c \sin ^{2} \theta}$,t1t2=$\frac{a x_{0}^{2}+b x_{0} y_{0}+c y_{0}^{2}+d x_{0}+e y_{0}+f}{a \cos ^{2} \theta+b \sin \theta \cos \theta+c \sin ^{2} \theta}$$\Rightarrow$t0=$\frac{2 t_{1} t_{2}}{t_{1}+t_{2}}$;而|PA||QB|= |QA||PB|$\Leftrightarrow$|t1||t2-t0|=|t1-t0||t2|$\Leftrightarrow$t0=$\frac{2 t_{1} t_{2}}{t_{1}+t_{2}}$成立. [面积定理]:已知点P关于圆锥曲线G的极线为l,过点P的直线与圆锥曲线G相交于A、B两点,分别过点A、B的两条平行线与直线l交于点D、C,记△APD、△CPD、△BPC的面积分别为S1,S2,S3,则:S22=4S1S2. 证明:以椭圆G:$\frac{x^{2}}{a^{2}}$+$\frac{y^{2}}{b^{2}}$=1(a>b>0)为例,设P(x0,y0),则极线l:$\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$.设A(x1,y1),B(x2,y2),并分别过点A、B作l的垂线,垂足分别为D1、C1,则$\frac{\left|A D_{1}\right|}{\left|B C_{1}\right|}$=$\frac{\left|\frac{x_{0} x_{1}}{a^{2}}+\frac{y_{0} y_{1}}{b^{2}}-1\right|}{\left|\frac{x_{0} x_{2}}{a^{2}}+\frac{y_{0} y_{2}}{b^{2}}-1\right|}$=$\frac{\left|b^{2} x_{0} x_{1}+a^{2} y_{0} y_{1}-a^{2} b^{2}\right|}{\left|b^{2} x_{0} x_{2}+a^{2} y_{0} y_{2}-a^{2} b^{2}\right|}$(注意到:a2b2=b2x12+a2y12,a2b2=b2x22+a2y2) =$\frac{\left|b^{2} x_{0} x_{1}+a^{2} y_{0} y_{1}-b^{2} x_{1}^{2}-a^{2} y_{1}^{2}\right|}{\left|b^{2} x_{0} x_{2}+a^{2} y_{0} y_{2}-b^{2} x_{2}^{2}-a^{2} y_{2}^{2}\right|}$=$\frac{\left|b^{2} x_{1}\left(x_{1}-x_{0}\right)+a^{2} y_{1}\left(y_{1}-y_{0}\right)\right|}{\left|b^{2} x_{2}\left(x_{2}-x_{0}\right)+a^{2} y_{2}\left(y_{2}-y_{0}\right)\right|}$(注意到:$\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$=$\frac{y_{2}-y_{0}}{x_{2}-x_{0}}$=k)=$\frac{\left|x_{1}-x_{0}\right|}{\left|x_{2}-x_{0}\right|}$$\frac{\left|a^{2} k y_{1}+b^{2} x_{1}\right|}{\left|a^{2} k y_{2}+b^{2} x_{2}\right|}$.又因$\frac{|A P|}{|B P|}$=$\frac{\left|x_{1}-x_{0}\right|}{\left|x_{2}-x_{0}\right|}$,以下只需证$\frac{\left|a^{2} k y_{1}+b^{2} x_{1}\right|}{\left|a^{2} k y_{2}+b^{2} x_{2}\right|}$=1,即|a2ky1+b2x1|=|a2ky2+b2x2|,由$\left\{\begin{array}{l}b^{2} x_{1}^{2}+a^{2} y_{1}^{2}=a^{2} b^{2} \\ b^{2} x_{2}^{2}+a^{2} y_{2}^{2}=a^{2} b^{2}\end{array}\right.$$\Rightarrow$b2(x1-x2)(x1+x2)+a2(y1-y2)(y1+y2)=0$\Rightarrow$b2(x1+x2)+a2k(y1+y2)=0$\Rightarrow$a2ky1+b2x1=-(a2ky2+b2x2)$\Rightarrow$|a2ky1+b2x1|=|a2ky2+b2x2|$\Rightarrow$$\frac{|A P|}{|B P|}$=$\frac{\left|A D_{1}\right|}{\left|B C_{1}\right|}$,由△ADD1∽△BCC1$\Rightarrow$$\frac{|A D|}{|B C|}$=$\frac{|A P|}{|B P|}$,设AC与BD交于点Q,由AD∥BC$\Rightarrow$$\frac{|A D|}{|B C|}$=$\frac{|A Q|}{|Q C|}$$\Rightarrow$$\frac{|A P|}{|B P|}$=$\frac{|A Q|}{|Q C|}$$\Rightarrow$PQ∥BC∥AD$\Rightarrow$S△BAC=S△BDC,两边同减S△BQC得S△QAB=S△QDC,又因S△PQA=S△PQD,S△PQB=S△PQC$\Rightarrow$S△PCD=S△QCD+S△PQD+S△PQC=S△QCD+S△PQA+S△PQB=S△QCD+S△QAB=2S△QAB$\Rightarrow$S△QAD=S△PAD=S1,S△QBC=S△PBC=S3,S△QAB=$\frac{1}{2}$S△PCD=$\frac{1}{2}$S2,注意到:$\frac{S_{\triangle Q A D}}{S_{\triangle Q A B}} \cdot \frac{S_{\triangle Q H C}}{S_{\triangle Q A B}}$=$\frac{|Q D|}{|Q B|} \cdot \frac{|Q C|}{|Q A|}$=1$\Rightarrow$$S_{\triangle Q A B}^{2}$=S△QADS△QBC$\Rightarrow$S22=4S1S2. |