Forgot password?
 Register account
View 1788|Reply 4

[几何] $S_{PAC}·S_{PBD}<S_{PCD}^2$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-7-8 17:08 |Read mode
过椭圆外一点P作直线交椭圆于两点A,B,
过P作椭圆的两条切线,切点为$T_1,T_2,$
过A,B作两条平行线交$T_1T_2$于C,D,
这个是否是正确的?
$S_{PAC}·S_{PBD}<S_{PCD}^2$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-8 17:48
用软件画了下发现恒有 $\dfrac{\S{PAC}\cdot\S{PBD}}{\S{PCD}^2}=\dfrac14$ ……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-7-8 18:33
证明也很简单……

QQ截图20200708183132.png

首先如上图,`l_P` 为 `P` 的极线,则 `P`, `A`, `E`, `B` 调和,故 `M`, `A`, `C`, `S` 调和。

而当 `AC` 与 `BD` 平行时,`S` 为无穷远点,则 `A` 为 `CM` 中点,同时 `B` 也为 `DN` 中点。

QQ截图20200708183200.png

回到原题,如上图,有
\begin{align*}
\frac{\S{PBD}}{\S{PCD}}&=\frac{BD}{CM}=\frac{BD}{2AC},\\
\frac{\S{PAC}}{\S{PCD}}&=\frac{AC}{DN}=\frac{AC}{2BD},
\end{align*}相乘即得结论。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-7-8 21:39
回复 3# kuing
对于抛物线、双曲线也一样吗

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-7-8 22:12
回复 4# ellipse

是的

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit