|
kuing
Posted 2020-7-21 03:23
如今再看,2008 年那证法其实也无需分类,可以用向量统一起来……
设平面单位向量 `\bm i`, `\bm j`, `\bm k` 两两夹角 $120\du$,则 `\bm i+\bm j+\bm k=\bm 0`,令 $\vv{OA}=x\bm i$, $\vv{OB}=y\bm j$, $\vv{OC}=z\bm k$,则有 `AB^2=x^2+xy+y^2` 等,且
\begin{align*}
\S{ABC}&=\frac12\bigl|\vv{AB}\times\vv{AC}\bigr|\\
&=\frac12\abs{(y\bm j-x\bm i)\times(z\bm k-x\bm i)}\\
&=\frac12\bigl|\bigl((x+y)\bm j+x\bm k\bigr)\times\bigl((x+z)\bm k+x\bm j\bigr)\bigr|\\
&=\frac12\abs{(x+y)(x+z)\bm j\times\bm k+x^2\bm k\times\bm j}\\
&=\frac12\abs{(xy+yz+zx)\bm j\times\bm k},
\end{align*}
所以
\[
\abs{xy+yz+zx}=\frac{2\S{ABC}}{\abs{\bm j\times\bm k}}=\frac4{\sqrt3}\S{ABC},
\]
也就是无论正负如何,都有
\begin{align*}
\prod(x^2+xy+y^2)\geqslant\abs{xy+yz+zx}^3
&\iff AB^2\cdot BC^2\cdot CA^2\geqslant\frac{64}{3\sqrt3}\S{ABC}^3\\
&\iff\sin A\sin B\sin C\leqslant\frac{3\sqrt3}8.
\end{align*} |
|