Forgot password
 Register account
View 2528|Reply 2

[不等式] 一道无穷级数不等式

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-7-31 21:27 |Read mode
$\sum\limits_{i=1}^\infty(x_i-y_i)^2<\varepsilon,\sum\limits_{i=1}^\infty x_i^2<\varepsilon,$求证$\sum\limits_{i=1}^\infty y_i^2<\varepsilon$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2020-8-4 20:30
回复 1# hbghlyj


估计是错的

举个反例:$x_i=\left(\frac{1}{\sqrt{2}}\right)^{i}$,而$y_1=1$, $i>1$时则有$y_i=x_i$。

如果令$\epsilon=1.1$好了,那么有
\[\sum_{i=1}^\infty(x_i-y_i)^2=(\frac{1}{\sqrt{2}}-1)^2=0.086<1.1=\epsilon\]
\[\sum_{i=1}^\infty x_i^2=\sum_{i=1}^\infty \frac{1}{2^i}=1<\epsilon\]

\[\sum_{i=1}^\infty y_i^2=1+\sum_{i=2}^\infty\frac{1}{2^i}=1.5>\epsilon\]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2020-12-10 15:56
回复 1# hbghlyj

最后那个应该是
$$\sum\limits_{i=1}^\infty y_i^2<4\varepsilon$$
由CS易证。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 20:51 GMT+8

Powered by Discuz!

Processed in 0.011956 seconds, 22 queries