Forgot password?
 Create new account
View 2520|Reply 5

[不等式] 一道丑陋的不等式

[Copy link]

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

v6mm131 Posted at 2013-11-7 18:12:25 |Read mode
Last edited by hbghlyj at 2025-4-10 00:56:31\[
\sqrt{a^4+7 a^3+a^2+7 a}+3 \sqrt{3} \sqrt{a}+a^2-10 a \geq 0(a \geq 0)
\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-7 18:16:08
通常这种问题我只想知道它有何背景

72

Threads

96

Posts

1170

Credits

Credits
1170

Show all posts

 Author| v6mm131 Posted at 2013-11-7 18:46:34
回复 2# kuing


    坐等kuing神解答

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-7 19:04:53
不知道背景就懒得想了,baoli掉算了。
约去 $\sqrt a$ 等价于
\[\sqrt{(a^2+1)(a+7)}+3\sqrt3+a\sqrt a-10\sqrt a\geqslant 0,\]
令 $a=x^2$, $3=y^2$,其中 $x$, $y>0$,则等价于证
\[\sqrt{\left(x^4+\frac19y^4\right)\left(x^2+\frac73y^2\right)} +y^3+x^3-\frac{10}3xy^2\geqslant 0,\]
如果 $x<1/2$,则 $\frac{10}3xy^2<\frac53y^2<\sqrt3y^2=y^3$,故此时上式显然成立;当 $x\geqslant1/2$ 时,要证上式只要证
\[\left(x^4+\frac19y^4\right)\left(x^2+\frac73y^2\right)\geqslant \left(y^3+x^3-\frac{10}3xy^2\right)^2,\]
展开因式分解等价于
\[\frac1{27}y^2(3x-2y)^2(27x^2+30xy-5y^2)\geqslant0,\]
由 $x\geqslant1/2$ 得 $27x^2+30xy-5y^2\geqslant27(1/2)^2+15y-5y^2=-33/4+15\sqrt3>0$,故此时不等式亦成立。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-7 22:10:04
取等条件是什么

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-7 22:12:00
回复 5# 其妙

从最后一式不是可以看出来么

手机版Mobile version|Leisure Math Forum

2025-4-21 14:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list