Forgot password?
 Register account
View 2060|Reply 9

[几何] 三角形边长与半径的一个不等式

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2020-8-9 22:09 |Read mode
△ABC中,求证:ab+bc+ca≤6R(R+r).

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-8-10 02:42
\[ab+bc+ca\leqslant\frac13(a+b+c)^2=\frac43s^2\leqslant\frac43(4R^2+4Rr+3r^2)\leqslant6R(R+r).\]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2020-8-11 07:00
回复 2# kuing


    倒数第二个不等号怎么来的?一

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-8-11 12:58
回复 3# guanmo1
由欧拉-察柏尔定理,R≥2r,所以
$\frac43(4R^2+4Rr+3r^2)-6R(R+r)=\frac23 (R+ 3 r) (2 r - R)≤0$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-8-11 17:06
回复 4# hbghlyj

他问的是这步的前一步就是那个 Gerretsen 不等式……

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-8-11 17:35
回复 3# guanmo1
抱歉看错了,其实这贴总结有Gerretsen不等式

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-8-11 19:45
回复 6# hbghlyj

那帖太长,楼主估计会嫌弃,况且现在看起来感觉我当时的推导也有点麻烦,有空考虑重写……

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2020-8-11 20:35
回复 5# kuing


    对,后来查到了,叫Gerretsen不等式,不知道最早的出处哪里能查到.

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2020-8-11 20:35
回复 6# hbghlyj


    谢谢.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-8-11 21:15
回复  hbghlyj
有空考虑重写
kuing 发表于 2020-8-11 19:45
期待(☆▽☆)

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit