Forgot password?
 Register account
View 2212|Reply 4

[不等式] 被一道不等式的小题难住了

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2020-8-10 17:01 |Read mode
求证:$\dfrac{x+1}{\sqrt{x+2}}+\dfrac{5-x}{\sqrt{6-x}}\leqslant 3,0\leqslant x\leqslant 4$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-8-11 00:13
为方便书写记 `a=x+2`, `b=6-x`,则 `a+b=8` 且
\[LHS=\frac{a-1}{\sqrt a}+\frac{b-1}{\sqrt b}=\sqrt a+\sqrt b-\frac1{\sqrt a}-\frac1{\sqrt b},\]这样就可以随便撸了,比如用 CS 和权方和
\[\sqrt a+\sqrt b\leqslant \sqrt {(1+1)(a+b)}=4,\]\[\frac 1{\sqrt a}+\frac 1{\sqrt b}\geqslant \frac {(1+1)^{3/2}}{\sqrt {a+b}}=1,\]所以 `LHS\leqslant3`。

不许用权方和?那改成纯均值,有
\[\sqrt a\leqslant1+\frac a4,\]以及
\[\frac1{\sqrt a}+\frac1{\sqrt a}+\frac a8\geqslant\frac32\implies\frac1{\sqrt a}\geqslant\frac34-\frac a{16},\]得到
\[\sqrt a-\frac1{\sqrt a}\leqslant\frac14+\frac5{16}a,\]所以
\[LHS\leqslant\frac12+\frac5{16}(a+b)=3.\]
PS、由此可见,原不等式无需对 `x` 作范围限制。

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2020-8-11 18:46
已知$x,y>0,xy$的最大值=__
\begin{align*}
\left(\frac{\sqrt{x^{2}+1}-1}{y}+1\right)\left(\frac{\sqrt{y^{2}+1}-1}{x}+1\right)=2
\end{align*}

还有这个小题帮忙看看

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-8-13 13:05
已知$x,y>0,xy$的最大值=__
\begin{align*}
\left(\frac{\sqrt{x^{2}+1}-1}{y}+1\right)\left(\frac{\sqrt{y^{2}+1}-1}{x}+1\right)=2
\end{align*}facebooker 发表于 2020-8-11 18:46
意思是已知 `x`, `y>0` 且
\[\left( \frac{\sqrt{x^2+1}-1}y+1 \right)\left( \frac{\sqrt{y^2+1}-1}x+1 \right)=2,\]求 `xy` 的最大值?

条件复杂而待求式简单,最好就是反过来,也就是用反证法……

假设 `xy>1`,记 `a=\sqrt{x/y}`,则
\begin{align*}
\frac{\sqrt{x^2+1}-1}y+1
&>\frac{\sqrt{x^2+xy}-\sqrt{xy}}y+1\\
&=\sqrt{\frac xy}\sqrt{\frac xy+1}-\sqrt{\frac xy}+1\\
&=a\sqrt{a^2+1}-a+1\\
&\geqslant a\cdot\frac{a+1}{\sqrt2}-a+1\\
&=\frac1{\sqrt2}(a^2+1)+\frac1{\sqrt2}a-a+1-\frac1{\sqrt2}\\
&\geqslant\left( \frac3{\sqrt2}-1 \right)a+1-\frac1{\sqrt2},
\end{align*}即
\[\frac{\sqrt{x^2+1}-1}y+1>\left( \frac3{\sqrt2}-1 \right)\sqrt{\frac xy}+1-\frac1{\sqrt2},\]同理
\[\frac{\sqrt{y^2+1}-1}x+1>\left( \frac3{\sqrt2}-1 \right)\sqrt{\frac yx}+1-\frac1{\sqrt2},\]于是
\begin{align*}
2&=\left( \frac{\sqrt{x^2+1}-1}y+1 \right)\left( \frac{\sqrt{y^2+1}-1}x+1 \right)\\
&>\left( \left( \frac3{\sqrt2}-1 \right)\sqrt{\frac xy}+1-\frac1{\sqrt2} \right)\left( \left( \frac3{\sqrt2}-1 \right)\sqrt{\frac yx}+1-\frac1{\sqrt2} \right)\\
&\geqslant\left( \frac3{\sqrt2}-1+1-\frac1{\sqrt2} \right)^2\\
&=2,
\end{align*}矛盾!从而必有 `xy\leqslant1`,当 `x=y=1` 时取等,所以 `xy` 的最大值就是 `1`。

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2020-8-13 14:07
回复 4# kuing


  妙!

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit