|
kuing
Posted 2020-8-13 13:05
已知$x,y>0,xy$的最大值=__
\begin{align*}
\left(\frac{\sqrt{x^{2}+1}-1}{y}+1\right)\left(\frac{\sqrt{y^{2}+1}-1}{x}+1\right)=2
\end{align*}facebooker 发表于 2020-8-11 18:46 意思是已知 `x`, `y>0` 且
\[\left( \frac{\sqrt{x^2+1}-1}y+1 \right)\left( \frac{\sqrt{y^2+1}-1}x+1 \right)=2,\]求 `xy` 的最大值?
条件复杂而待求式简单,最好就是反过来,也就是用反证法……
假设 `xy>1`,记 `a=\sqrt{x/y}`,则
\begin{align*}
\frac{\sqrt{x^2+1}-1}y+1
&>\frac{\sqrt{x^2+xy}-\sqrt{xy}}y+1\\
&=\sqrt{\frac xy}\sqrt{\frac xy+1}-\sqrt{\frac xy}+1\\
&=a\sqrt{a^2+1}-a+1\\
&\geqslant a\cdot\frac{a+1}{\sqrt2}-a+1\\
&=\frac1{\sqrt2}(a^2+1)+\frac1{\sqrt2}a-a+1-\frac1{\sqrt2}\\
&\geqslant\left( \frac3{\sqrt2}-1 \right)a+1-\frac1{\sqrt2},
\end{align*}即
\[\frac{\sqrt{x^2+1}-1}y+1>\left( \frac3{\sqrt2}-1 \right)\sqrt{\frac xy}+1-\frac1{\sqrt2},\]同理
\[\frac{\sqrt{y^2+1}-1}x+1>\left( \frac3{\sqrt2}-1 \right)\sqrt{\frac yx}+1-\frac1{\sqrt2},\]于是
\begin{align*}
2&=\left( \frac{\sqrt{x^2+1}-1}y+1 \right)\left( \frac{\sqrt{y^2+1}-1}x+1 \right)\\
&>\left( \left( \frac3{\sqrt2}-1 \right)\sqrt{\frac xy}+1-\frac1{\sqrt2} \right)\left( \left( \frac3{\sqrt2}-1 \right)\sqrt{\frac yx}+1-\frac1{\sqrt2} \right)\\
&\geqslant\left( \frac3{\sqrt2}-1+1-\frac1{\sqrt2} \right)^2\\
&=2,
\end{align*}矛盾!从而必有 `xy\leqslant1`,当 `x=y=1` 时取等,所以 `xy` 的最大值就是 `1`。 |
|