Last edited by hbghlyj 2020-8-12 23:02设∠BAC=α,∠ACB=β,∠CBA=γ,有向弧DG,GH,HE,EF,FI,ID所对的有向圆周角为u,e,w,d,v,f,则
d=α+u-v-w
e=β+v-w-u
f=γ+w-u-v
$\sin u\sin v\sin w=\sin d\sin e\sin f$
令u,v为自由变量,解出w(无需使d,e,f全为正的).在一个固定圆上取固定的点D',然后按相应的弧度截取G',H',E',F',I',得到一个P',在△ABC中作出相似对应的P,令u,v变化,追踪P.
|