|
原地址 Sequences and Series of Functions.pdf
Sequences and Series of Functions (Rudin)
Stone-Weierstrass Theorem: Let $f : [a, b] →\Bbb R$ be continuous. Then there exists a sequence of polynomials $(P_n(x))$ such that converges uniformly to $f$ on $[a, b]$.
Proof: Consider any continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies $g(x)=0$ for $x \notin[0,1]$. For each $n \geq 1$ set
$$
Q_n(x)=\frac{\left(1-x^2\right)^n}{\int_{-1}^1\left(1-x^2\right)^n d x} .
$$
The area under the curve $y=Q_n(x)$ over $[-1,1]$ is equal to 1 , and has the shape of a bell curve with most of it's area concentrated in a narrow band above $x=0$. The polynomials $Q_{10}(x), Q_{20}(x), Q_{30}(x)$ are plotted below:
import graph;size(10cm);
void f(int n,pen c){
draw(graph(new real (real x) { return (1-x^2)^n/(sqrt(pi)*gamma(1+n)/gamma(3/2+n));}, -1,1),c+linewidth(1.5));
}
f(10,blue);
f(20,orange);
f(30,green);
xaxis(Ticks(NoZeroFormat,Step=0.5));
yaxis(Ticks(NoZeroFormat));
For $0 \leq x \leq 1$ define
$$
P_n(x)=\int_{-1}^1 g(x+t) Q_n(t) d t .
$$
$P_n(x)$ is a polynomial of degree $\leq 2 n$ :
$$
\int_{-1}^1 g(x+t) t^k d t=\int_{x-1}^{x+1} g(u)(u-x)^k d u=\sum_{i=0}^k(-1)^i\left(\begin{array}{c}
k \\
i
\end{array}\right) x^i \int_{x-1}^{x+1} g(u) u^{k-i} d u .
$$
We have
$$
\left|P_n(x)-g(x)\right| \leq \int_{-1}^1|g(x+t)-g(x)| Q_n(t) d t .
$$
Let $M=\sup g(x)$. Since $g$ is uniformly continuous on $\mathbb{R}$, there exists $\delta_k>0$ such that $|t|<\delta_k$ implies $|g(x+t)-g(x)| \leq \frac{1}{k}$ for all $x$. This yields
$$
\left|P_n(x)-g(x)\right| \leq 2 M \int_{-1}^{-\delta_k} Q_n(t) d t+\frac{1}{k} \int_{-\delta_k}^{\delta_k} Q_n(t) d t+2 M \int_{\delta_k}^1 Q_n(t) d t .
$$
We have
$$
\frac{1}{k} \int_{-\delta_k}^{\delta_k} Q_n(t) d t \leq \frac{1}{k} .
$$
We also have
$$
\int_{-1}^1\left(1-x^2\right)^n d x \geq 2 \int_0^1(1-x)^n d x=\frac{2}{n+1},
$$
hence for $\delta_k \leq|x| \leq 1$ we have
$$
\left|Q_n(x)\right| \leq \frac{n+1}{2}\left(1-\delta_k^2\right)^n .
$$
Therefore
$$
|P_n(x)-g(x)| \leq 2 M(n+1)\left(1-\delta_k^2\right)^n+\frac{1}{k}
$$
for $0 \leq x \leq 1$, i.e.
$$
\left\|P_n-g\right\| \leq 2 M(n+1)\left(1-\delta_k^2\right)^n+\frac{1}{k} .
$$
Let $\epsilon>0$ be given. Choose $k$ so that $\frac{1}{k}<\frac{\epsilon}{2}$. For sufficiently large $n$, $2 M(n+1)\left(1-\delta_k^2\right)^n<\frac{\epsilon}{2}$, hence $\left\|P_n-g\right\|<\epsilon$. Therefore $P_n \rightarrow g$ uniformly on $[0,1]$.
Given $f:[a, b] \rightarrow \mathbb{R}, g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$ satisfies $g(a)=$ $g(b)=0$ and $h(x)=g((b-a) x+a)$ satisfies $h(0)=h(1)=0$. If $P_n(x) \rightarrow$ $h(x)$ uniformly on $[0,1]$, then $P_n(x) \rightarrow g((b-a) x+a)$ on $[0,1]$, therefore $P_n\left(\frac{x-a}{b-a}\right) \rightarrow g(x)$ uniformly on $[a, b]$, therefore
$$
P_n\left(\frac{x-a}{b-a}\right)+f(a)+\frac{f(b)-f(a)}{b-a}(x-a) \rightarrow f(x)
$$
uniformly on $[a, b]$. |
|