|
设$ 1<x_{1} \leq x_{2} \leq \cdots \leq x_{n}, 1<y_{1} \leq y_{2} \leq \cdots \leq y_{n}, $对任意正整数$ k (1 \leq k \leq n) $有$ x_{1} x_{2} \cdots x_{k} \geq y_{1} y_{2} \cdots y_{k} . $证明:
$\prod\limits_{i=1}^n\left(1-\frac{1}{x_{i}}\right)\geq\prod\limits_{i=1}^n\left(1-\frac{1}{y_{i}}\right)$ |
|