Forgot password?
 Register account
View 3340|Reply 2

[不等式] 两个递增数列,前k项的积,比较大小

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-9-7 23:28 |Read mode
设$  1<x_{1} \leq x_{2} \leq \cdots \leq x_{n}, 1<y_{1} \leq y_{2} \leq \cdots \leq y_{n},  $对任意正整数$  k (1 \leq k \leq n)  $有$  x_{1} x_{2} \cdots x_{k} \geq y_{1} y_{2} \cdots y_{k} .  $证明:
$\prod\limits_{i=1}^n\left(1-\frac{1}{x_{i}}\right)\geq\prod\limits_{i=1}^n\left(1-\frac{1}{y_{i}}\right)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-9-8 00:31
想起了 karamata 不等式,不知有没有关联……

0

Threads

2

Posts

10

Credits

Credits
10

Show all posts

乐乐 Posted 2020-11-3 23:43
求对数就是和式了

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit