Forgot password?
 Register account
View 2547|Reply 2

[几何] 来自人教群:反比例与矩形相交下的等线段

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-9-16 22:01 |Read mode
如图,矩形$OABC$顶点$A$,$C$分别位于$x$轴,$y$轴正半轴.
反比例函数$xy=k$第一象限图象交矩形$OABC$两边于$D$,$E$点.
将$\triangle BED$沿$ED$翻折,若$B$点刚好落在$x$轴上的点$F$处.
则$EO=EF$.

PS:QQ识别文字好像还不错,只需要修修公式.
h-l.jpg

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-9-16 22:09
由于$EB=EF$,下面证明点$O$在以点$E$为圆心,$EF$为半径的圆上.
连接$OB$,只需证$$\angle BOF=\frac 12 \angle BEF=\angle BED.$$

又$$\frac{CE}{EB}=\frac{S_{\triangle OCE}}{S_{\triangle OBE}}=\frac{S_{\triangle OAD}}{S_{\triangle OBD}}=\frac{AD}{DB}\Rightarrow ED\sslash AC,$$
于是$$\angle BOF=\angle ACB=\angle BED,$$得证.

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-9-16 22:19
回复 2# isee

证得很漂亮

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit