Forgot password?
 Register account
View 2501|Reply 2

[函数] 两个三角函数求最大值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-9-16 23:38 |Read mode
求助:两个三角函数求最大值:
(1)已知$f(x)=sin^kxsin^t(2x),k,t\inN^*$,求$f(x)$的最大值;
(2)已知$f(x)=cos^kxcos^t(2x),k,t\inN^*$,求$f(x)$的最大值.
能不能用均值不等式求解?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-9-17 17:44
Last edited by lemondian 2020-9-18 01:18今年高考题:
已知函数$f(x)=sin^2xsin(2x)$。
(2)证明:$|f(x)|\leqslant \dfrac{3\sqrt{3}}{8}$;
(3)设$n\inN^*$,证明:$sin^2xsin^22xsin^24xsin^28x\cdots sin^22^nx\leqslant (\dfrac{3}{4})^n= (\dfrac{3\sqrt{3}}{8})^\dfrac{2n}{3}$.

请问,在1#的问题(1)中,若$f(x)$的最大值为$A$,下面有什么结论呢?
$sin^2xsin^22xsin^24xsin^28x\cdots sin^22^nx$.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-9 13:16
今年高考题:
已知函数$f(x)=sin^2xsin(2x)$。
(2)证明:$|f(x)|\leqslant \dfrac{3\sqrt{3}}{8}$;
(3 ...
lemondian 发表于 2020-9-17 17:44
多种解法参见第21题:mp.weixin.qq.com/s?__biz=MzIxMDYxMDMxOQ==& … 06&lang=zh_CN#rd

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit