Forgot password?
 Register account
View 1496|Reply 1

来自网友一道小题,7变量求值

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-9-18 23:02 |Read mode
QQ图片20200918225915.png
法一:令
\[f(n)=n^3x_1+(n+1)^3x_2+\cdots+(n+6)^3x_7-n,\]则由条件有 `f(1)=f(2)=f(3)=f(4)=0`,而 `f(n)` 的次数不超过 `3`,它有四个不同的根,只能恒为零,所以 `f(5)=0`,即所求式为 `5`。

此法零计算量,全因等式右边是等差,如果右边换成一般的数字,其实也可以做,计算量也很小:

法二:令
\[g(n)=n^3x_1+(n+1)^3x_2+\cdots+(n+6)^3x_7,\]由拉格朗日插值公式,`g(n)` 可以写成
\begin{align*}
g(n)={}&\frac{(n-2)(n-3)(n-4)}{(1-2)(1-3)(1-4)}g(1)+\frac{(n-1)(n-3)(n-4)}{(2-1)(2-3)(2-4)}g(2)\\
&+\frac{(n-1)(n-2)(n-4)}{(3-1)(3-2)(3-4)}g(3)+\frac{(n-1)(n-2)(n-3)}{(4-1)(4-2)(4-3)}g(4),
\end{align*}所以
\[g(5)=-g(1)+4g(2)-6g(3)+4g(4).\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-9-18 23:16
回复 1# kuing


最后结果还真是5。
法1通俗,哪见过,好像

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit