Forgot password?
 Register account
View 3020|Reply 11

[组合] 划分为奇数元/偶数元集合,选取元素总数一定的方案数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-9-19 22:01 |Read mode
求证$\sum_{i=1}^{n-1}\left(\begin{array}{c}2 i-1 \\i\end{array}\right)\left(\begin{array}{c}2(n-i-1) \\n-i-1\end{array}\right)=2^{2n-3}\left(1-\frac{(2n-3)!!}{2^{n-1}(n-1)!}\right)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-9-20 00:18
QQ截图20200920001921.png
呃……没看懂这个标题……和待证式又有何关联?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-9-20 08:42
回复 2# kuing
大概是这样:
把1到2n-3划分为两两不交的四个集合A,B,C,D,满足以下条件:
$\forall x\in A\cup B\forall y\in C\cup D:x<y$
|A|-|B|=1,|C|=|D|,|A|+|C|=n-1
这样可以帮助理解,总比记住一个抽象的表达式容易,但是,好像对解决问题没啥帮助吧

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-9-20 08:50
回复 2# kuing
换一种形式:
整数$n>1,$求证$\sum_{i=1}^{n-1}\left(\begin{array}{c}2 i-1 \\i\end{array}\right)\left(\begin{array}{c}2(n-i-1) \\n-i-1\end{array}\right)=2^{2n-3}-\left(\begin{array}{c}2n-3 \\n-1\end{array}\right)$

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2020-9-21 18:08
这个长得有点像,不知道有没有帮助?
35635455299.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-9-22 20:47
回复 5# 青青子衿
您这个是如何证明的\curious

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-9-22 21:21
Last edited by hbghlyj 2020-10-19 11:31回复 5# 青青子衿

artofproblemsolving.com/community/c6h40150p251668
推荐搜索工具(数据库包括aops,math.stackexchange)
比如这题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-11-17 22:36
Last edited by hbghlyj 2020-11-18 11:29昨天做梦的时候恍惚想起这个题.....忽然对这个题的组合意义有点感觉了.....
QQ浏览器截图20201001140534.png QQ浏览器截图20201001140534.png

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-11-18 08:48
回复 8# hbghlyj
强!送上崇拜!真有梦中解题。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-11-18 11:44
改编一下:$\forall n\in \mathbb N,$
\[\sum _{i=0}^n \binom{4 i}{2 i} \binom{4 (n-i)}{2 (n-i)}=2^{4n-1}+2^{2n-1}\binom{2n}{n}\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-11-18 11:48
Last edited by hbghlyj 2020-11-18 11:55回复 10# hbghlyj
$\sum\limits_{i=0}^{\infty } \binom{2 i}{i} x^i=(1-4 x)^{-\frac12}$
取出它的偶数项之和:
$\sum\limits_{i=0}^{\infty } \binom{4 i}{2i} x^{2i}=\frac12\left((1-4 x)^{-\frac12}+(1+4 x)^{-\frac12}\right)=\frac{\sqrt{(1-16x^2)^{-1}+(1-16x^2)^{-\frac12}}}{\sqrt2}$
把$x^2$换成x就得到
$\sum\limits_{i=0}^{\infty } \binom{4 i}{2 i} x^i=\frac{\sqrt{(1-16x)^{-1}+(1-16x)^{-\frac12}}}{\sqrt2}$
平方,对比n次项即得证.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-10-10 20:54
hbghlyj 发表于 2020-11-17 15:36
...平方得$\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left(\begin{array}{c}2 k \\ k\end{array}\right)\left(\begin{array}{c}2 n-2 k \\ n-k\end{array}\right) x^{n}=\frac{1}{1-4 x}=\sum_{n=0}^{\infty} 2^{2 n} x^{n}$
aops #21
应该是说这个证明
I don't really know how to do it but I tried doing $ \frac{1}{\sqrt{1-4x}}·\frac{1}{\sqrt{1-4x}}=\frac{1}{1-4x}$ but I got messed with the algebra.
本质上是#2的darij写的$$ \sum_{i = 0}^n\binom{ - \frac12}{i}\cdot\binom{ - \frac12}{n - i} = \binom{ - 1}{n}$$

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit