Forgot password
 Register account
View 2307|Reply 6

[函数] 又是零点问题

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2020-9-26 20:42 |Read mode
Last edited by aishuxue 2020-9-26 20:50已知$a>0$, 求证: 函数$f(x)=a\ln x+\dfrac{2}{x}-a-2$在$(0,+\infty)$上有两个零点.
我的困惑是: 在区间$(\dfrac{2}{a},+\infty)$上比较好找,在$(0,\dfrac{2}{a})$上不知道怎么找.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-9-26 22:07
`(0,2/a)` 上的话,分个类吧:

若 `a\leqslant1`,取 `x_1=1/e\in(0,2/a)`,有 `f(x_1)=2(e-a-1)>0`;

若 `a>1`,取 `x_2=1/(ea^2)\in(0,2/a)`,有 `f(x_2)=-2a\ln a+2ea^2-2a-2>-2a(a-1)+4a^2-2a-2=2(a^2-1)>0`。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-9-26 23:19
回复 2# kuing

不可思议,竟然没用极限

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2020-9-26 23:56
Last edited by hbghlyj 2025-3-21 23:53回复 3# isee

面对现实,明知扯极限也是白扯啊……

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2020-9-27 07:59
回复 2# kuing
取这样的数,是如何想到的

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-9-27 14:10
回复 5# aishuxue

尝试呗,实际上我还先尝试过 1/a, 1/(ea) 之类,都不够小,再升次就够了,如果还不够,再换更高阶形式……

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2020-9-27 22:05
回复 6# kuing


谢谢,辛苦了!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:33 GMT+8

Powered by Discuz!

Processed in 0.012768 seconds, 24 queries