|
我在oeis网站上看到如下的
a(n) = 2^n * Sum_{i = 0...C(n, 2)} C(C(n, 2), i)*3^i. The summation conditions on i, 0 <= i <= C(n, 2), the number of 1's above the main diagonal in the matrix representations of the relations on {1, 2, ..., n}. - Geoffrey Critzer, Feb 18 2011
也就是$$2^{n^2-n}=\sum_{i = 0}^{\binom n 2}\binom{\binom n2}i\cdot 3^i$$证明是显然的:$$2^{n^2-n}=(3+1)^{\binom n2}=\sum_{i = 0}^{\binom n 2}\binom{\binom n2}i\cdot 3^i$$但是,如何理解Geoffrey Critzer所述的“去掉主对角线的$n\times n$的(0,1)矩阵,可以看作{1, 2, ..., n}上的二元关系,这里的i是主对角线上方的1的个数”(标红色字不理解 ) |
|