Forgot password?
 Register account
View 2562|Reply 1

[函数] 两个参变量大打出手 拦不住了

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2020-9-30 03:12 |Read mode
$(mx^2+nx)\ln x\geqslant 5x^2-4x-1$恒成立,求$\frac{n}{m}$的最大值___

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-9-30 09:22
这没啥难的啊……

令 `f(x)=(mx^2+nx)\ln x-(5x^2-4x-1)`,因为 `f(1)=0`,则 `f(x)\geqslant0` 恒成立的必要(非充分)条件是 `f'(1)=0` 且 `f''(1)\geqslant0`,解得 `n=6-m` 且 `m\geqslant2`,所以 `n/m=6/m-1\leqslant2`。

当然最后必须验证 `m=2`, `n=4` 满足题意,即证明
\[\ln x\geqslant\frac{5x^2-4x-1}{2x^2+4x},\]求导易证之,略。

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit