Forgot password?
 Register account
View 2802|Reply 3

[几何] 平面向量几个问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-10-12 13:07 |Read mode
几个问题:(1)$ a,b∈R,|a|+|b|=max({|a+b|,|a-b|}); $成立否?(2)$ a,b $为平面向量是否有同样的式子成立?(3)已知平面向量$| \vv{a}|=m ,|\vv{b}|=n$,则$|\vv{a}+\vv{b}|+|{\vv{a}-\vv{b}}|$的最大值及最小值?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-10-12 15:01
回复 1# 敬畏数学

(1)(2)都成立。
(3)$(\bm{a+b})^2+(\bm{a-b})^2=2(\bm{a}^2+\bm{b}^2)$.
则有$|\bm{a+b}|+|\bm{a-b}|\leqslant \sqrt{2(\bm{a+b})^2+(\bm{a-b})^2}=\sqrt{2(m^2+n^2)}$,得最大值;
又$|\bm{a+b}|+|\bm{a-b}|\geqslant max(|\bm{a+b}|,|\bm{a-b}|)=max(m,n)$.得最小值.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2020-10-13 09:59
Last edited by 敬畏数学 2020-10-13 10:24回复 2# 力工
谢谢!(1)成立;(2)不成立,应该是a,b为平面向量,$ |\vv{a} |+|\vv{b}|≥max(|\vv{a}+\vv{b}|,|\vv{a}-\vv{b}|)$;(3)最大值正确,先用柯西不等式(权方和不等式),等号取得为向量a⊥向量b,再根据平行四边形的对角线平方和=四边形平方和即得;最小值$ |\vv{a}+\vv{b}|$+$ |\vv{a} -\vv{b}|$≥2$max(|\vv{a}|,|\vv{b}|)$,等号成立当向量a与向量b共线。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-24 16:19
回复 3# 敬畏数学

(2)成立。对于两个空间向量,也就相当于平面向量。

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit