Forgot password
 Register account
View 2505|Reply 5

[函数] 求$\sqrt 2\sin A+\sin B\sin C$的最大值

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-10-13 19:24 |Read mode
Last edited by isee 2021-12-24 10:35原是选择题,其中有一个选项是2:在$\triangle ABC$中,则$\sqrt 2\sin A +\sin B\sin C$的最大值为_____.


个人的做法比较复杂,将角$A$化成$B$,$C$,然后反复辅助角公式,的确能得到个上限$2$,但等号是否成立,未细致验证。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-10-13 19:40
A 化 B、C?为什么不反过来……`\sin B\sin C=(\cos(B-C)+\cos A)/2\le(1+\cos A)/2`

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-12-24 11:20
Last edited by isee 2021-12-24 11:28终于是把此题的过程补了源自知乎提问

注意到 $$\sin (x+y)\sin(x-y)=\sin^2x-\sin^2y$$

\begin{align*} \sqrt 2\sin A +\sin B\sin C&=\sqrt 2\sin A+\sin\left(\frac {B+C}2+\frac {B-C}2\right)\sin\left(\frac {B+C}2-\frac {B-C}2\right)\\[1em] &=\sqrt 2\sin A+\sin^2\left(\frac {B+C}2\right)-\sin^2\left(\frac {B-C}2\right)\\[1em] &\leqslant \sqrt 2\sin A+\cos^2\frac {A}2\\[1em] &= \sqrt 2\sin A+\frac 12\cos A+\frac 12\\[1em] &= \frac 32\sin (A+\varphi)+\frac 12\\[1em] &\leqslant \frac 32+\frac 12\\[1em] &=2. \end{align*}

取“=”略.

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2021-12-24 11:54
回复 3# isee

擦,知乎那边说不要用积化和差,你觉得你用“正弦平方差公式”TA就能接受嘛?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-12-24 11:59
回复 4# 爪机专用

管Ta那么多,而且我确实没用
=================

话说回来,拆角啊,正弦平方差啊等等本质与积化和差同根同源,如果完全不用,怕是只能是两次辅助角公式,哈哈哈哈哈

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-12-24 11:59
回复 5# isee

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:57 GMT+8

Powered by Discuz!

Processed in 0.013545 seconds, 25 queries