Forgot password?
 Register account
View 2420|Reply 4

[几何] 平面几何--两正方形有一公共点,求证三线共点

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2020-10-19 14:55 |Read mode
正方形ABCD和正方形DEFG,求证:AE,CG,BF共点.


一个初二小伙编的问题.
解析法算晕了,有没平几的办法?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-10-19 15:15
你得给出图,或者交待清楚顶点的排列方向,否则如果 ABCD 顺时针而 DEFG 逆时针,结论就不成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-10-19 15:24
设 `AE` 与 `CG` 交于 `H`,易知 `\triangle ADE\cong\triangle CDG`,得 `\angle DEH=\angle DGH`,所以 `EHDG` 共圆,而此圆显然就是正方形 `DEFG` 的外接圆,可见 `DH\perp HF`,同理 `DH\perp HB`,所以 `H` 在 `BF` 上。
QQ截图20201019152500.png

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2020-10-19 15:43
谢谢kk

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2020-10-22 10:57
我觉得这里有个坐标变换在里面,旋转加伸缩,然后根据坐标变换的性质好像就能得出结论。。。直觉

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit