Forgot password?
 Register account
View 2399|Reply 9

[数论] $ a_{n+1}=a_n^2-2,a_0=4 $

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2020-10-22 13:34 |Read mode
Last edited by realnumber 2020-10-23 14:25数列{$a_n$},$a_0=4,a_{n+1}=a_n^2-2,n\in N $
\[ 求证:当且仅当 2^n-1 \mid a_{n-2}时,2^n-1为素数.\]


因5楼要不暂时加个条件  n>2,晚上问找正主问一下。已问了,有类似条件,这个问题可以百度到,据说已经解决.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-10-22 13:35
虽然会求通项,但对要证的东西完全没办法

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2020-10-22 13:37
回复 2# kuing


  通项也好的啊,简单的话写一下,我只会算前3项

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-10-22 13:50
回复 3# realnumber

令 `a_n=b_n+\frac1{b_n}`

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2020-10-22 14:51
正确吗?$n=2$ 时,$a_0=4$,$2^2-1=3$,$3$ 是素数,但 $4$ 不能被 $3$ 整除。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-10-22 15:07
回复 5# hejoseph

程序验证了前二十来项,只有第一项不成立……

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2020-10-22 15:11
回复 6# kuing
要验证也不必一个一个验证,$2^n-1$ 是素数,则必须 $n$ 是素数,此时 $2^n-1$ 就是 Mersenne 素数,目前知道的 Mersenne 素数是有限的。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2020-11-21 17:42
回复 1# realnumber
上个百度链接膜膜~

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2020-11-21 20:55
从网友处得知这个主楼就是Lucas-Lehmer检测,充要条件,除了叙述不太一样,本质内容都一样。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2020-11-23 20:20
回复 9# abababa
牛逼!证明太高大上,看不懂…

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit