Forgot password
 Register account
View 1780|Reply 1

[数列] 求助两个数列问题

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2020-11-5 09:26 |Read mode
(1)若数列${a_n}$满足$a_{n+1}+(-1)^na_n=An+B$,$S_n$为其前$n$项和,则$S_4,S_8-S_4,S_{12}-S_8,\cdots $成等差数列,且公差为$8A$.
(2)若数列${a_n}$满足$a_{n+2}+(-1)^na_n=An+B$,$S_n$为其前项和.
问题:(1)如何证明?
(2)中有没有类似于(1)的性质,若有,如何证明?

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2020-11-5 10:10
(1) 有
\[ a_{n+1}+(-1)^n a_n=An+B \]

\[ a_{n+2}+(-1)^{n+1} a_{n+1}=A(n+1)+B \]
两式消去$a_{n+1}$得
\[ a_{n+2}+a_n=A(n+1)-(-1)^{n+1}An+B[1-(-1)^{n+1}] \]
于是
\[ a_{n+4}+a_{n+2}=A(n+3)-(-1)^{n+3}A(n+2)+B[1-(-1)^{n+3}] \]
两式再消去$a_{n+2}$得
\[ a_{n+4}-a_n = 2A-(-1)^{n+1}\cdot 2A \]
所以
\[ a_{4n+5}-a_{4n+1}=4A, a_{4n+6}-a_{4n+2}=0, a_{4n+6}-a_{4n+3}=4A, a_{4n+7}-a_{4n+4}=0 \]
下略.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:21 GMT+8

Powered by Discuz!

Processed in 0.011287 seconds, 22 queries