Forgot password?
 Register account
View 1769|Reply 1

[数列] 求助两个数列问题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-11-5 09:26 |Read mode
(1)若数列${a_n}$满足$a_{n+1}+(-1)^na_n=An+B$,$S_n$为其前$n$项和,则$S_4,S_8-S_4,S_{12}-S_8,\cdots $成等差数列,且公差为$8A$.
(2)若数列${a_n}$满足$a_{n+2}+(-1)^na_n=An+B$,$S_n$为其前项和.
问题:(1)如何证明?
(2)中有没有类似于(1)的性质,若有,如何证明?

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2020-11-5 10:10
(1) 有
\[ a_{n+1}+(-1)^n a_n=An+B \]

\[ a_{n+2}+(-1)^{n+1} a_{n+1}=A(n+1)+B \]
两式消去$a_{n+1}$得
\[ a_{n+2}+a_n=A(n+1)-(-1)^{n+1}An+B[1-(-1)^{n+1}] \]
于是
\[ a_{n+4}+a_{n+2}=A(n+3)-(-1)^{n+3}A(n+2)+B[1-(-1)^{n+3}] \]
两式再消去$a_{n+2}$得
\[ a_{n+4}-a_n = 2A-(-1)^{n+1}\cdot 2A \]
所以
\[ a_{4n+5}-a_{4n+1}=4A, a_{4n+6}-a_{4n+2}=0, a_{4n+6}-a_{4n+3}=4A, a_{4n+7}-a_{4n+4}=0 \]
下略.

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit