|
kuing
posted 2020-11-7 14:40
我先写一下通项:
条件化为
\[a_{n+1}-2(n+1)-\frac12+a_n-2n-\frac12=0,\]于是
\[a_n-2n-\frac12=(-1)^{n-1}\left( a_1-2-\frac12 \right),\]为方便起见令 `a_1=5/2+x`,那么通项为
\[a_n=2n+\frac12+(-1)^{n-1}x,\]则 `a_{n+1}-a_n=2+2(-1)^nx`,故
\[\frac{a_n^2+a_{n+1}^2}{a_n+a_{n+1}}=\frac{(a_n+a_{n+1})^2+(a_n-a_{n+1})^2}{2(a_n+a_{n+1})}=\frac{4n+3}2+\frac{2(1+(-1)^nx)^2}{4n+3},\]然后怎么撸? |
|