Forgot password?
 Register account
View 2107|Reply 7

[数列] 递推式求首项的范围

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-5 19:17 |Read mode
Last edited by isee 2020-11-7 21:58源来高三模拟卷,应该是一道陈题。

已知数列$\{a_n\}$满足$a_{n+1}+a_n=4n+3$,若对$\forall n\in \mathrm N^*$,都有$$\frac {a_n^2+a_{n+1}^2}{a_n+a_{n+1}}\geqslant 4$$成立,求$a_1$的范围。

其实通项是可以求的,如果求出,直接代入已知不等式,是可硬得到$$a_1\in \left(-\infty,\frac{7-\sqrt 7}2\right]\cup \left[\frac{7+\sqrt 7}2,+\infty\right).$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-7 14:37
怎么硬得?感觉很麻烦啊……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-7 14:40
我先写一下通项:
条件化为
\[a_{n+1}-2(n+1)-\frac12+a_n-2n-\frac12=0,\]于是
\[a_n-2n-\frac12=(-1)^{n-1}\left( a_1-2-\frac12 \right),\]为方便起见令 `a_1=5/2+x`,那么通项为
\[a_n=2n+\frac12+(-1)^{n-1}x,\]则 `a_{n+1}-a_n=2+2(-1)^nx`,故
\[\frac{a_n^2+a_{n+1}^2}{a_n+a_{n+1}}=\frac{(a_n+a_{n+1})^2+(a_n-a_{n+1})^2}{2(a_n+a_{n+1})}=\frac{4n+3}2+\frac{2(1+(-1)^nx)^2}{4n+3},\]然后怎么撸?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-7 14:50
哦,我傻了,右边太小,n>=2 时一定是成立的,所以只需考虑 n=1 那就没难度了,这题真逗……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-7 14:59
回复 4# kuing

哈哈哈哈哈,难得看到你写这种“入门级”的不等式

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-7 15:06
回复 5# isee

TNND,一不小心就被坑了

于是整个过程就可以这样写:

当 `n\geqslant2` 时,有
\[\frac{a_n^2+a_{n+1}^2}{a_n+a_{n+1}}\geqslant\frac{a_n+a_{n+1}}2=\frac{4n+3}2\geqslant\frac{4\cdot2+3}2>4;\]
当 `n=1` 时
\[\frac{a_1^2+a_2^2}{a_1+a_2}\geqslant4\iff\frac{a_1^2+(7-a_1)^2}7\iff a_1\leqslant\frac{7-\sqrt7}2\ \text{或}\ a_1\geqslant\frac{7+\sqrt7}2.\]综上,……

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 秒也

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-7 15:08
这简直可以收录到“水母不等式”系列里头,这右边简直是太小……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-7 15:18
Last edited by isee 2020-11-7 17:41回复 6# kuing

我是化为$a_n$后配方,发现也只要$n=1$成立……具体如下:

\begin{align*}
\frac {a_n^2+a_{n+1}^2}{a_n+a_{n+1}}&\geqslant 4\\[1em]
\iff (a_n+a_{n+1})^2-2a_n a_{n+1}&\geqslant 4(a_n+a_{n+1})\\[1em]
\iff (2a_n-(4n+3))^2&\geqslant (4n+3)(5-4n)
\end{align*}

于是,当且仅当$n=1$……

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit