Forgot password
 Register account
View 1939|Reply 0

[函数] 双变量求$k-b$的最大值

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2020-11-5 19:29 |Read mode
源自高三模拟卷,也应该是一道陈题。




已知函数$f(x)=\ln x-ax+b$,其中$a,b\in \mathrm R$。若$a=1$,$b\in [0,2]$,且存在实数$k$,使得对任意实数$x\in [1,\mathrm e]$,恒有$f(x)\geqslant kx-x\ln x-1$成立,求$k-b$的最大值。



题目尽量保持“原貌”。其实恒成立式子等价于$$(x+1)\ln x-x+1\geqslant kx-b,$$此处取$x=1$结合,左边函数图象即可猜测$(k-b)_{\max}=0$,不过,进一步的讨论似乎要利用图象直观……

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 15:53 GMT+8

Powered by Discuz!

Processed in 0.017422 second(s), 21 queries

× Quick Reply To Top Edit