Forgot password
 Register account
View 1453|Reply 0

[不等式] 三元轮换对称不等式求最佳常数

[Copy link]

3226

Threads

7843

Posts

52

Reputation

Show all posts

hbghlyj posted 2020-11-21 14:57 |Read mode
Last edited by hbghlyj 2020-11-21 19:02$n\inN$,设$E ( a , b , c ) = a ( a - b ) ( a - c ) + b ( b - c ) ( b - a ) + c ( c - a ) ( c - b ) $,求最小的k,使$\left(\sum a^{2n-1}\right)E\left(a,b,c\right)\ge k\sum{a^nb^n\left(a-b\right)^2}$对任意正数a,b,c恒成立
n=0,$k=\frac{1}{2}$,当且仅当(a,b,c)~(1,1,1)时取等.
n=1,k=1,当且仅当(a,b,c)~(1,1,1)或(0,1,1)时取等.
n=2,$k=\frac{3}{2}$,当且仅当(a,b,c)~(1,1,1)或(0,1,1)时取等.
PS:赞word2019自带的latex公式编辑器,直接复制出来就是latex.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 09:40 GMT+8

Powered by Discuz!

Processed in 0.011126 seconds, 23 queries