Forgot password?
 Register account
View 1567|Reply 2

[不等式] 四元不等式

[Copy link]

21

Threads

23

Posts

242

Credits

Credits
242

Show all posts

chudengshuxue Posted 2020-11-21 22:17 |Read mode
Last edited by hbghlyj 2025-3-19 17:31$a, b, c, d \inR_+$,且 $a+b+c+d=4$,求证:$a^2 b c+b^2 c d+c^2 d a+d^2 a b \leq 4$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-11-22 14:28
设$\left\{p,q,r,s\right\}=\left\{a,b,c,d\right\},p\geq q\geq r\geq s$,由排序不等式,$\ a^2bc+b^2cd+c^2da+d^2ab=a(abc)+b(bcd)+c(cda)+d(dab)
\le p\left(pqr\right)+q\left(pqs\right)+r\left(prs\right)+s\left(qrs\right)=\left(pq+rs\right)\left(pr+qs\right)\le\left(\frac{pq+rs+pr+qs}{2}\right)^2=\frac{1}{4}(\left(p+s\right)\left(q+r\right))^2\le\frac{1}{4}\left(\left(\frac{p+q+r+s}{2}\right)^2\right)^2=4.$
artofproblemsolving.com/community/c6h100960

21

Threads

23

Posts

242

Credits

Credits
242

Show all posts

 Author| chudengshuxue Posted 2020-11-22 15:35
回复 2# hbghlyj


   谢谢

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit