Forgot password?
 Register account
View 2134|Reply 6

[函数] 二元条件下的最小值

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-11-22 17:46 |Read mode
$ a,b∈R+,a-b^2=1,\dfrac{4}{a} +\dfrac{a^2}{2b}$的最小值——————。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-23 02:49
\[\frac4a+\frac{a^2}{2b}\geqslant\frac4a+\frac{a^2}{1+b^2}=\frac4a+a\geqslant4.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-23 09:54
回复 2# kuing


这个2b了不得

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-23 13:17
回复 3# isee

没啥意思,数据凑得刚好而已,随便改个数字就没得玩。

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2020-11-23 17:30
我不是针对谁,我是说,在座的各位都是 2b

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-9 12:30
\[\frac4a+\frac{a^2}{2b}\geqslant\frac4a+\frac{a^2}{1+b^2}=\frac4a+a\geqslant4.\]
kuing 发表于 2020-11-23 02:49
要复制这个代码怎么复制不了?而楼主的代码就可以复制?

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-9 12:41
也来装一下逼,$a,b∈R+$,$a=b^2+1$,用$a$的局部代换:

$\dfrac{4}{a} +\dfrac{a^2}{2b}=\dfrac{4}{a} +\dfrac{a(b^2+1)}{2b}\geqslant2\sqrt{\dfrac{4(b^2+1)}{2b}}\geqslant2\sqrt{\dfrac{4\cdot2b}{2b}}=4$

本质上是一样的

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit