Forgot password?
 Register account
View 1296|Reply 1

[数列] 数列$\{3^n-2^n\}$ 中是否存在三项成等差数列

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-25 17:42 |Read mode
数列$\{3^n-2^n\}$ 中是否存在三项成等差数列?

写出具体几项,可以初步判断是不存在的。

初步想法是
记$a_n=3^n-2^n$假设三项为等差数列$a_p,a_q,a_r$,$1\leqslant p<q<r$且为整数,易知$2a_q<a_{q+1}\leqslant a_r<a_p+a_r$,矛盾。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-11-26 11:50
回复 1# isee

我们假设$p<q<r$且$a_p+a_r=2a_q$,而显然$a_n$是递增的,如此必须有
\[a_r=2a_q-a_p\ge a_{q+1}\]
\[2a_q-a_{q+1}\ge a_p\]
\[2(3^q-2^q)-(3^{q+1}-2^{q+1})\ge a_p\]
\[-3^q\ge a_p\]
这怎么可能呢?$a_p>0$的啊,因此是不行的

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit