Forgot password?
 Register account
View 1447|Reply 2

[函数] $y=x!$的导数是多少

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-26 17:32 |Read mode
Last edited by isee 2020-11-28 09:14阶乘里,要求是自然数,突发奇想,$\left(\frac 12\right)!$可以计算么?如果可以$$y=x!$$的导数是多少

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-11-26 17:53
回复 1# isee

老兄你高数都忘光了吧?

阶乘推广了就是伽马函数啊,有
\[\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt\]
当$x$为正整数时有
\[\Gamma(n)=(n-1)!\]

\[(\frac{1}{2})!=\Gamma(\frac{3}{2})=\frac{\sqrt{\pi}}{2}\]
导数即为
\[\Gamma'(x)=\int_0^{+\infty}\ln(t)t^{x-1}e^{-t}dt\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-26 18:11
Last edited by isee 2020-11-26 20:17回复 2# 战巡

说得是哩,多谢指点,我去翻翻《数学分析》

=====
翻到了,华东师大第三版,从190页开始;唉,当年此部分是选学,压根都认真学过,完全没印象了~

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit