Forgot password?
 Create new account
View 850|Reply 1

2009年美数月的一道极限征解题

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-11-27 11:04:08 |Read mode
\[ \displaystyle\color{black}{\lim\limits_{n\to+\infty}n\prod\limits_{k=1}^{n}\left(1-\dfrac{1}{k}+\dfrac{5}{4k^2}\right)=\dfrac{\cosh(\pi)}{\pi}} \]

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

abababa Posted at 2020-11-27 13:11:47
Last edited by abababa at 2020-11-27 13:24:00回复 1# 青青子衿

\[
\begin{aligned}
\prod_{k=1}^{n}\left(1-\frac{1}{k}+\frac{5}{4k^2}\right) &= \frac{\prod_{k=1}^{n}(k+\frac{-1-2i}{2})\prod_{k=1}^{n}(k+\frac{-1+2i}{2})}{\prod_{k=1}^{n}k\prod_{k=1}^{n}k}\\
&=\frac{1}{n! \cdot n!}\cdot \left[\frac{n!n^{(-1-2i)/2}}{\Gamma(\frac{-1-2i}{2}+1)} \cdot \frac{n!n^{(-1+2i)/2}}{\Gamma(\frac{-1+2i}{2}+1)}\right]\\
&=\frac{1}{n} \cdot \frac{1}{\Gamma(\frac{1-2i}{2})\Gamma(\frac{1+2i}{2})}\\
&= \frac{1}{n} \cdot \frac{\sin(\pi\cdot\frac{1-2i}{2})}{\pi}\\
&= \frac{1}{n} \cdot \frac{\cos(i\pi)}{\pi}
\end{aligned}
\]

是不是我哪步系数又弄错了?我明白了,第一步就错了 ,把i的系数变成2就对了。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list