Forgot password?
 Register account
View 2526|Reply 13

[几何] 正方形相关几何证明

[Copy link]

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

wzyl1860 Posted 2020-11-27 17:56 |Read mode
Last edited by hbghlyj 2025-5-10 18:26如图,在正方形ABCD中,点E在AB上,点F在BC上,且AE=BF=FG,EF交DG点 H.
M为BH中点,作∠MCN=45°交EF于点N,求证:HN=DN

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-2 15:23
QQ截图20201202151304.png
首先如上图,有\[\tan\angle GDB=\frac{GI}{ID}=\frac{BI}{ID}=\frac{BF}{FC}=\frac{BF}{BE}=\tan\angle FEB,\]可见 `\angle H=45\du`,于是以 `DH` 为对角线作正方形 `DKHJ`,则 `K` 在直线 `EF` 上,如下图:
QQ截图20201202151810.png
熟知 `BH` 的中点 `M` 与 `KC` 构成等腰直角三角形,由此可见这个点 `K` 就是原题中的点 `N`,所以命题得证。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-2 16:34
Last edited by isee 2020-12-2 16:48回复 1# wzyl1860

这个等线段,不知道怎么用。。。

看这个方方正正,用解析法,验证了一半,角$\angle CMN=90\circ$。

当然,这绝对不是楼主所期望的。

以点A为坐标原点,向量$\vv{AB}$为$x$轴,设$AB=1$,$AE=a$,硬算可以得$$H\left(\frac {a^2-a+1}{2a^2-2a+1},\frac {2a^3-a^2+a}{2a^2-2a+1}\right),M\left(\frac {3a^2-3a+1}{4a^2-4a+2},\frac {2a^3-a^2+a}{4a^2-4a+2}\right),N\left(\frac {a^3-a^2+a}{2a^2-2a+1},\frac {a^3}{2a^2-2a+1}\right),$$由于,个人对$CM,MN$是否垂直更有兴趣,硬算得(算式略,应该也没人有兴趣)$2\abs{CM}^2=\abs{CN}^2$。

猜测三角形$DNH$理应也是等腰直角三角形,不过,没进一步了计算了……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-2 16:36
回复 2# kuing


擦,又撞车了~~

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-2 16:42
回复 2# kuing


这个等线用得好,我连接的$AC$,方向完全不同,没有找到出路

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-2 18:31
回复 2# kuing

这个前半段的45度,同事的无字证明。
120220.png

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-12-2 18:34
回复 6# isee

乃思!

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

 Author| wzyl1860 Posted 2020-12-3 08:27
角H=45度容易搞定,主要是△CKM等腰直角搞不定

20

Threads

9

Posts

163

Credits

Credits
163

Show all posts

 Author| wzyl1860 Posted 2020-12-3 08:28
不知道不用同一法能否搞定?

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-12-3 10:59
Last edited by 乌贼 2020-12-3 11:13回复 9# wzyl1860
211.png
易证$ DEBH $四点共圆,$ BC $延长线交园与$ K $,有\[ \angle FHG=\angle KHG=45\du  \]由$ \triangle EBF\sim \triangle KHF $及角平分线定理知\[ \dfrac{BF}{BE}=\dfrac{FH}{HK}=\dfrac{FG}{GK}\riff BE=GK=FC \]又\[ \triangle KGD\sim \triangle HGB\riff \dfrac{KG}{DG}=\dfrac{HG}{GB}=\dfrac{MF}{FB}\riff \dfrac{FC}{DG}=\dfrac{MF}{GF}\riff \dfrac{GF}{GD}=\dfrac{FM}{FC} \]由$ \dfrac{GF}{GD}=\dfrac{FM}{FC} $及$ \angle DGF=\angle CGL=\angle CFM $得\[ \triangle DGF\sim \triangle CFM \]因此$ \angle LDF=\angle LCF $即$ DCLF $四点共圆。得\[ \angle DLF=\angle DGF=90\du \riff \angle LFH=45\du=LCN  \]有$ DCLFN $五点共圆,得\[ \angle DNF=90\du  \]综上$ \triangle DNH $为等腰直角三角形,故\[ DN=NH \]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-3 16:51
Last edited by isee 2020-12-3 17:09回复 10# 乌贼

这三个等线段的应用实在是高,绝处逢生!

不过,一如继往的图形特别的复杂,就像我解析证明一样,看图就吓跑了.

以下证明的内核是 乌贼 的,从我的角度,当$\angle DHE=45^\circ$之后,便将三角形$DAE$绕点$A$逆时旋转90度到三角形$DCK$,于是$D,E,B,H,K$五点共圆,且$FC=KG$.


ccccc.png


连接$FM$则,$FM\sslash GH,FM=\frac 12 GH$,而由五点共圆有$$CF\cdot 2GF=KG\cdot 2GF=DG\cdot 2FM\iff \frac {CF}{FM}=\frac {DG}{GF},$$进一步知,图中红黄两三有形相似,再进一步,易得$D,F,C,L$四点共圆,再回来当初的$\angle DHE=45^\circ$,连接$FL$即得$\angle LFH=45^\circ=\angle NCL$,再次有$N,F,L,C$四点共圆,即五点$$D,N,F,L,C\text{共圆},$$证毕.

两次相似,五次共圆,啧啧啧啧啧

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-3 17:26
回复 10# 乌贼


此证得命题之后,便可接2楼最后,可导出NM垂直于CM了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-3 17:27
Last edited by isee 2020-12-3 22:25哪是不是意味着NM垂直于CM更难?或者说与原命题等价?

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-12-4 10:28
Last edited by 乌贼 2020-12-4 10:34回复 13# isee
几何也有套路,我的思路是欲证结论得需两颜色三角形相似,两三角形已有一角相等,再需两边成比例,从而想到三角形BFM(即三角形BGH)与谁相似。然后构造……

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit