Forgot password
 Register account
View 1675|Reply 3

[函数] 抽象函数解不等式。

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2020-12-1 14:40 |Read mode
函数$f(x)$对任意的非零实数$x_1, x_2$都有$f(x_1x_2)=f(x_1)+f(x_2)$,若$f(x)$在$(0,+\infty)$上是增函数,解不等式$f(x)+f(x-\frac{1}{2})\le 0$。
我证明了$f(x)$是偶函数,所以在$(-\infty,0)$上是减函数,然后还有$f(1)=f(-1)=0$,这样把那个不等式用条件变成$f(x(x+\frac{1}{2}))\le 0$就可以解了,但是在点$x=0$处要怎么做?

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2020-12-1 16:02
题目很明显有问题啊,由已知条件无法确定f(0),又没有交代定义域,所以既可以说f(0)没定义,也可以随便你定义。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-12-1 16:13
$x=0$未定义,或者说本题不在定义域内,不矛考虑

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2020-12-1 18:13
原来如此,还以为能通过什么方法把$f(0)$的值算出来呢。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:40 GMT+8

Powered by Discuz!

Processed in 0.013569 seconds, 22 queries