Forgot password?
 Register account
View 1538|Reply 4

一道函数极值题

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-11-8 18:56 |Read mode
函数$f(x)=x^x$,$g(x)=x^{\frac{1}{x}}$,证明$f(x)$与$f(g(x))$有相同的极小值[吓]

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2013-11-8 19:12
这个可以放到初等区吧

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2013-11-8 19:14
实际上,这题有更一般的结论!
只是伪装了一下,披了一件幂指函数的外衣!

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-2-28 05:45
en.wikipedia.org/wiki/Differentiation_rules#D … ogarithmic_functions
$\frac {d}{dx}\left(x^{x}\right)=x^{x}(1+\ln x).$

$\displaystyle {\frac {d}{dx}}\left(f(x)^{g(x)}\right)=g(x)f(x)^{g(x)-1}{\frac {df}{dx}}+f(x)^{g(x)}\ln {(f(x))}{\frac {dg}{dx}},\qquad {\text{if }}f(x)>0,{\text{ and if }}{\frac {df}{dx}}{\text{ and }}{\frac {dg}{dx}}{\text{ exist.}}$

$\displaystyle {\frac {d}{dx}}\left(f_{1}(x)^{f_{2}(x)^{\left(...\right)^{f_{n}(x)}}}\right)=\left[\sum \limits _{k=1}^{n}{\frac {\partial }{\partial x_{k}}}\left(f_{1}(x_{1})^{f_{2}(x_{2})^{\left(...\right)^{f_{n}(x_{n})}}}\right)\right]{\biggr \vert }_{x_{1}=x_{2}=...=x_{n}=x},{\text{ if }}f_{i<n}(x)>0{\text{ and }}\frac {df_{i}}{dx}\text{ exists. }$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-4-14 23:37
x^x 导数的四种求法
一、对数求导法
$y=x^x$

$\ln y =x\ln x$

$\frac{y'}y=\ln x+ 1$

$y'= x^x(\ln x+ 1)$

PS: 我是不是忘了证对数求导适用条件...

二、指数复合求导

看成指数函数

$(x^x)'=(e^{x\ln x})' = x^x(\ln x + 1)$


三、真 $\cdot$ 复合求导

$y=u(s,t)=s^t$

$s=f(x);t=g(x)$

$f(x)=g(x)=x$

按链式法则展开:

${\ dz \over dt}={\partial z \over \partial x}{dx \over dt}+{\partial z \over \partial y}{dy \over dt}$

\[\begin{aligned} y'&=t s^{t-1}f'(x)+s^t \ln s g'(x)\\
&=g(x)[f(x)]^{g(x)-1}f'(x)+[f(x)]^{g(x)}\ln f(x)\cdot g'(x)\\
&=f(x)^{g(x)}\left[\frac{g(x)}{f(x)}f'(x)+g'(x)\ln f(x)\right]\\
&=x^x(1+\ln(x)) \\
\end{aligned}\]

四、按定义求导

\[\begin{aligned} (x^x)'&=\lim_{h\to0}\frac{(x+h)^{x+h}-x^x}{h}\\
&=\lim_{h\to0}\frac{(x+h)^{x+h}-(x+h)^x+(x+h)^x-x^x}{h}\\
&=\lim_{h\to0}(x+h)^x\lim_{h\to0}\frac{(x+h)^h-1}{h} +x^x\lim_{h\to0}\frac{\left(1+\frac hx\right)^x-1}{h}\\
&=\lim_{h\to0}(x+h)^x\lim_{h\to0}\frac{(x+h)^h-1}{h} +x^x\lim_{h\to0}\frac{\left(1+\frac hx\right)^{\large\frac xhh}-1}{h}\\
&=x^x\ln(x)+x^x\cdot\ln(e)\\
&=x^x(\ln x+1) \end{aligned}\]

最后一步极限没看懂的要补补基础了...

如何求:当 x→0 时,x/ln(1+x)的极限?

Mobile version|Discuz Math Forum

2025-6-5 08:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit