Forgot password?
 Register account
View 1977|Reply 8

[几何] 圆锥问题

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2020-12-8 01:53 |Read mode
Last edited by APPSYZY 2020-12-12 17:31

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2020-12-8 01:54
设圆锥瓶的高为$H$cm,圆锥瓶母线与高的夹角(半顶角)为$\omega$,根据瓶内上半部分体积不变,可得方程:
\[\frac{\pi}{3}(8\tan\omega)^2\cdot8=\frac{\pi}{3}(H\tan\omega)^2\cdot H-\frac{\pi}{3}\big((H-2)\tan\omega\big)^2\cdot(H-2),\]
整理得到:
\[3H^2-6H-28=0,\]
解得$H=\dfrac{3-\sqrt{93}}{3}<0$(舍去)或$H=\dfrac{3+\sqrt{93}}{3}<8$(舍去),因此满足条件的圆锥不存在.

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2020-12-8 01:57
上面是我列方程算出来的(希望没有算错),但是能不能从几何的角度分析出,为什么8cm和2cm这两个数据会导致这样的圆锥不存在?假设是$x$cm和$y$cm,它们需要满足怎样的关系,才能保证圆锥存在?此时圆锥的高$H$又是多少呢?

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2020-12-8 01:59
不知对于这个“不存在”是不是有更直观的几何角度去解释。。。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-12-8 10:48
你计算错了吧

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-12-8 10:57
回复 3# APPSYZY

只要x>y都是存在的

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-12-8 16:12
设圆锥瓶的高为$H$cm,圆锥瓶母线与高的夹角(半顶角)为$\omega$,根据瓶内上半部分体积不变,可得方程:
...
APPSYZY 发表于 2020-12-8 01:54
唉呀
你計緊$8^3=H^3-(H-2)^3$,但係整理咗$8^2=H^3-(H-2)^3$出嚟吖

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2020-12-8 22:50
只要$x>y$,不管什么情况总有一圆锥体的底面积与之对应。

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2020-12-10 21:17
回复 7# tommywong
我的确是在这里出错了...

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit