Forgot password?
 Register account
View 1897|Reply 3

[几何] 这是圆的极坐标方程吗?

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2020-12-11 23:01 |Read mode
\begin{align*}
\dfrac{4 l^2\rho^2 - (\rho^2- 2 c)^2}{(\rho^2+2 c)^2}=\tan^2(\theta)
\end{align*}
圆心在哪里?半径是多少呢?

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2020-12-12 00:36
先用笨方法暴算,即代 `\rho^2=x^2+y^2`, `\tan\theta=y/x`,得到
\[x^4+2x^2y^2+y^4-4cx^2-4l^2x^2+4cy^2+4c^2=0,\]整理为
\[(x^2+y^2+2c)^2-4(2c+l^2)x^2=0,\]所以当 `2c+l^2\geqslant0` 时,方程表示两个圆 `x^2+y^2+2c=\pm2\sqrt{2c+l^2}x`,也就是
\[\bigl( x\pm\sqrt{2c+l^2} \bigr)^2+y^2=l^2,\]这么说来 `l` 就是半径,圆心就是那根号。

然后再来猜原式的几何意义?待续……

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2020-12-12 00:55
原来由余弦定理就可以变出来了,真没意思哇……

设圆心为 `(m,0)`,则由余弦定理有
\[\cos\theta=\frac{\rho^2+m^2-r^2}{2\rho m},\]于是
\begin{align*}
\tan^2\theta&=\left( \frac{2\rho m}{\rho^2+m^2-r^2} \right)^2-1\\
&=\frac{4\rho^2m^2-(\rho^2+m^2-r^2)^2}{(\rho^2+m^2-r^2)^2}\\
&=\frac{4\rho^2r^2-(\rho^2-m^2+r^2)^2}{(\rho^2+m^2-r^2)^2},
\end{align*}然后令 `m^2-r^2=2c`,顺便将 `r` 写成 `l`,就是 1# 的看不出半径和圆心的形式了。

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2020-12-12 11:03
回复 3# kuing
谢谢kk,一开始我还以为与阿氏圆有关

Mobile version|Discuz Math Forum

2025-6-3 06:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit