Forgot password?
 Register account
View 2362|Reply 2

[几何] 垂心连线证明垂直

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-12-12 22:43 |Read mode
D为$\triangle$ABC内角A的平分线上一点(异于A) ,E,F分别为$\triangle$ACD,$\triangle$ABD的垂心.G为BC中点.证明DG⊥EF.
qq_pic_merged_1607784001776.jpg

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-12-12 23:47
Last edited by hbghlyj 2020-12-13 00:04题源:纯几何吧2761推广
证: (insaneΩ)
方法1:作P关于M对称点P'
∠PCP'= 180°-∠BPC= 90°-∠PBA+ 90°-∠ACP-∠BAC=∠BAD +∠EAC-∠BAC=∠EAD
且${AE\over AF}={2R_{\odot PCA}•\cos∠PAC\over 2R_{\odot PAB}•\cos∠BAP}={PC cos∠PAC/sin∠PAC \over PB cos∠BAP/sin∠BAP}={PC\over PB }={CP\over CP'}$,故△PCP'~△EAF.
结合CP⊥AE,CP'⊥AF,知PP'⊥EF
-53041870ef6e7a79.jpg
方法2:
1df03d51d698a6da.png
其中X的生成本质是过G的BC垂线与过A的AP垂线的交点.
设U,V,W分别为BC垂线向,PG垂线向,AD垂线向的无穷远点.过G垂直于AP的直线交过A垂直于BC的直线于J,过C的AP垂线交过G的PG垂线于K,对AEW与UVG用笛沙格定理知只需证$AK\bot CP$.这是显然的.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-1-27 13:54
Last edited by hbghlyj 2021-1-27 14:24回复 1# hbghlyj
用重心坐标算
不到1秒
  1. ptD = {u, b, c};
  2. ptE = Ortocentro[{ptA, ptC, ptD}];
  3. ptF = Ortocentro[{ptA, ptB, ptD}];
  4. ptG = {0, 1, 1};
  5. EF = Recta[ptE, ptF];
  6. DG = Recta[ptD, ptG];
  7. SonPerpendiculares[EF, DG]
Copy the Code
72414578_795544637558350_3561505470185209856_o.jpg
--------------
下载Mathematica插件baricentricas.nb

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit