Forgot password?
 Register account
View 1758|Reply 3

[数列] 首项未知的分别奇偶项是等差(比)数列中的不等式

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-16 17:47 |Read mode
Last edited by isee 2020-12-16 21:59已知数列$\left\{a_n \right\}$,$\left\{b_n \right\}$均为递增数列,$\left\{a_n \right\}$的前$n$项和为$S_n$,$\left\{b_n\right\}$的前$n$项和为$T_n$.  且满足$a_n+a_{n+1}=2n$,$b_n\cdot b_{n+1}=2^n(n\in \text{N})$,则下列说法正确的有(    )

A.$0<a_1<1$        B.$1<b_1<\sqrt{2}$        C.$S_{2n}<T_{2n}$        ……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-16 21:45
标题是不是有问题,题没说是等差等比,实际上也不一定是啊……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-16 21:53
回复 2# kuing

哦,分奇偶项,改改去,先

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-16 22:07
Last edited by isee 2020-12-16 22:17先看$\left\{a_n \right\}$,对于$a_1$的范围,由递增数列,易知 A 项正确.

对于$$S_{2n}=\sum_{k=1}^{2n-1}(a_k+a_{k+1})=2\sum_{k=1}^{2n-1}k=2n^2.$$


再看$\left\{b_n \right\}$,对于$a_1$的范围,由递增数列,易知 B 项正确.

由递推式,可知$b_{n+2}=2b_n$,于是$$T_{2n}=(b_1+b_3+\cdots+b_{2n-1})+(b_2+b_4+\cdots+b_{2n})=(b_1+b_2)(2^n-1)> 2\sqrt{b_1b_2}(2^n-1)>2n^2.$$

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit