Forgot password?
 Register account
View 2483|Reply 3

[几何] 求体积最大值实际是阿氏圆

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-16 17:52 |Read mode
如图,在四棱锥$P-ABCD$中,$PA\bot $平面$ABCD$,底面$ABCD$是直角梯形,$A B \px C D$,$AB\bot AD$,$CD=AD=\sqrt{2}AB=2$,$PA=3$,若动点$Q$在$\vartriangle PAD$内及边上运动,使得$\angle CQD=\angle BQA$,则三棱锥$Q-ABC$的体积最大值为______.
121620.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-18 15:28
回复 1# isee

依题$\angle CQD=\angle BQA$可得$$Rt\triangle QDC\sim Rt\triangle QAB\Rightarrow \frac{DQ}{QA}=\frac{DC}{AB}=\sqrt 2,$$

即(在平面$PDA$内)点$Q$的到定点$D,A$距离之比为定值:亦点$P$的轨迹是阿波罗尼斯圆。

由平面几何知识可知,此阿氏圆的半径$$r=\frac{AD}{\sqrt 2-\frac 1{\sqrt 2}}=2\sqrt 2 \text{且圆心在} DA \text{延长线上},$$
进一步,知当点$Q$在$PA$上时,所求三棱锥的体积最大,此时$h_Q=QA=2$ ,即有三棱锥$Q−ABC$的体积最大值为$$\frac {2\sqrt 2}3.$$

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-12-23 10:00
[b]回复 2# isee
一道旧题。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2021-3-28 19:47

Mobile version|Discuz Math Forum

2025-5-31 11:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit