|
Author |
isee
Posted 2020-12-18 15:16
回复 1# isee
简解:记$PF_1=p$,$PF_2=q$,则由中线长公式有$$\frac 94=\frac 12 p^2+\frac 12 q^2-\frac 14\cdot 4c^2,$$
又$$\vv{F_1P}+\vv{PF_2}=\vv{F_1F_2}\Rightarrow p^2+2\vv{F_1P}\cdot \vv{PF_2}+q^2=4c^2,$$
将$\vv{F_1P}\cdot \vv{PF_2}=\frac 34$代入,解方程组得$$c^2=3.$$
从而椭圆$C:\frac {x^2}4+y^2=1$。
设直线$AB$的方程为$y=mx+n$,$A)(x_1,y_1),B(x_2,y_2)$。
直线与椭圆联立,消$y$得$$(4m^2+1)x^2+8mnx+4n^2-4=0,$$于是$$x_1+x_2=-\frac{8mn}{4m^2+1},x_1x_2=\frac{4n^2-4}{4m^2+1},y_1y_2=(mx_1+n)(mx_2+n)=\frac{n^2-4m^2}{4m^2+1},$$
由$$\alpha+\beta=\frac {\pi}2\iff k_{MA}\cdot k_{MB}=1\iff y_1y_2=x_1x_2+2(x_1+x_2)+4,$$
代入数据,化简得$$20m^2-16mn+3n^2=0\iff (2m-n)(10m-3n)=0,$$
直线不过点$M$,知$$n=\frac {10}3m\Rightarrow y=m\left(x+\frac{10}3\right),$$
即直线过定点$(-10/3,0)$。 |
|