Forgot password?
 Register account
View 2033|Reply 5

[几何] 中线长公式立功然后上韦达定理求定点

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-12-16 18:02 |Read mode
已知椭圆$C:\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\left( a>b>0 \right)$的离心率为$\frac{\sqrt{3}}{2}$,其左、右焦点分别为${{F}_{1}}$,${{F}_{2}}$,点$P$为坐标平面内的一点,且$\left| \overset{\to }{\mathop{OP}}\, \right|=\frac{3}{2}$,$\overset{\to }{\mathop{P{{F}_{1}}}}\,\cdot \overset{\to }{\mathop{P{{F}_{2}}}}\,=-\frac{3}{4}$,$O$为坐标原点.
(1)求椭圆$C$的方程;
(2)设$M$为椭圆$C$的左顶点,$A$,$B$是椭圆$C$上两个不同的点,直线$MA$,$MB$的倾斜角分别为$\alpha $,$\beta $,且$\alpha +\beta =\frac{\pi }{2}$证明:直线$AB$恒过定点,并求出该定点的坐标.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-16 18:06
今天几个题来自江苏,湖北等八校12月上旬高三的联考,公式由word默认转的,所以公式勿究~

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-16 18:45
回复 2# isee

\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1 ……
这码转得也太……
还有这个 \overset{\to }{\mathop{P{{F}_{1}}}}\,\cdot \overset{\to }{\mathop{P{{F}_{2}}}}\,= ……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-16 19:00
回复 3# kuing


    不知道会不会拖慢显示速度

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-16 19:03
回复 4# isee

理论上会,但人应该感觉不出来

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-12-18 15:16
回复 1# isee


简解:记$PF_1=p$,$PF_2=q$,则由中线长公式有$$\frac 94=\frac 12 p^2+\frac 12 q^2-\frac 14\cdot 4c^2,$$
又$$\vv{F_1P}+\vv{PF_2}=\vv{F_1F_2}\Rightarrow p^2+2\vv{F_1P}\cdot \vv{PF_2}+q^2=4c^2,$$
将$\vv{F_1P}\cdot \vv{PF_2}=\frac 34$代入,解方程组得$$c^2=3.$$

从而椭圆$C:\frac {x^2}4+y^2=1$。

设直线$AB$的方程为$y=mx+n$,$A)(x_1,y_1),B(x_2,y_2)$。
直线与椭圆联立,消$y$得$$(4m^2+1)x^2+8mnx+4n^2-4=0,$$于是$$x_1+x_2=-\frac{8mn}{4m^2+1},x_1x_2=\frac{4n^2-4}{4m^2+1},y_1y_2=(mx_1+n)(mx_2+n)=\frac{n^2-4m^2}{4m^2+1},$$
由$$\alpha+\beta=\frac {\pi}2\iff k_{MA}\cdot k_{MB}=1\iff y_1y_2=x_1x_2+2(x_1+x_2)+4,$$
代入数据,化简得$$20m^2-16mn+3n^2=0\iff (2m-n)(10m-3n)=0,$$
直线不过点$M$,知$$n=\frac {10}3m\Rightarrow y=m\left(x+\frac{10}3\right),$$
即直线过定点$(-10/3,0)$。

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit