Forgot password?
 Register account
View 1766|Reply 2

[数论] $v_{n}(n!)$是否遍历$\mathbb{N}^+$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-12-16 18:21 |Read mode
Last edited by hbghlyj 2020-12-23 23:38对n=2,3,$\cdots$,定义$a_n=\max\{k\in\mathbb{N}^+\mid n^k|n!\}$
  1. list=Table[{n,IntegerExponent[n!,n]},{n,2,10000}]
Copy the Code
$a_n$是否遍历$\mathbb{N}^+$?
也就是说,对任意$m\in\mathbb{N}^+$,是否存在n,使得$a_n=m$
例如对m=33,$n\in\{544,608,736,928,992,\ldots\}$.

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-12-23 17:01
$\forall c\in \mathbb{N^+},~\exists P\in \mathbb{P},~s.t. P>c$
$n=cP,~v_n(n!)=v_P(n!)=[\frac{n}{P}]=c$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2020-12-23 23:43
回复 2# tommywong
有点懂了.谢谢

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit