Forgot password?
 Register account
View 1915|Reply 4

[数论] $a^{a^a}$与$a^a$的个位不同

[Copy link]

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

hbghlyj Posted 2020-12-19 19:51 |Read mode
Last edited by hbghlyj 2020-12-21 02:21对正整数a,求证:$a^{a^a}$与$a^a$的个位不同,当且仅当$a\equiv2,18\pmod {20}$

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2020-12-19 23:06
回复 1# hbghlyj
自创题?显示a=10时,它们的个位相同呀

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

 Author| hbghlyj Posted 2020-12-21 02:21
回复 2# 睡神
哈哈,原题是a<2015求这样的a的个数.
1楼的错误已修正.(我已证出,但比较麻烦,希望得见更好的做法.如果到2021年1月1日没有回复的话,我就帖出我的麻烦的做法)
感谢指正!

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-12-21 15:51
Last edited by tommywong 2020-12-22 09:16$2\mid a(a-1)\Rightarrow 2\mid a^a(a^{a^a-a}-1)$

$a^a(a^{a^a-a}-1)\equiv\begin{cases}
a^0 (a^{0^a-0}-1)\equiv 0\pmod{5},~a\equiv 0\pmod{4}\\
a^1 (a^{1^a-1}-1)\equiv 0\pmod{5},~a\equiv 1\pmod{4}\\
a^2 (a^{2^a-2}-1)\equiv a^2 (a^{0-2}-1)\equiv a^2(a^2-1)\pmod{5},~a\equiv 2\pmod{4}\\
a^3 (a^{3^a-3}-1)\equiv a^3 (a^{3^1-3}-1)\equiv 0\pmod{5},~a\equiv 3\pmod{4}\end{cases}$

$a^2(a^2-1)\equiv\begin{cases}
0^2(0^2-1)\equiv 0\pmod{5},~a\equiv 0\pmod{5}\\
1^2(1^2-1)\equiv 0\pmod{5},~a\equiv 1\pmod{5}\\
2^2(2^2-1)\equiv 2\pmod{5},~a\equiv 2\pmod{5}\\
3^2(3^2-1)\equiv 2\pmod{5},~a\equiv 3\pmod{5}\\
4^2(4^2-1)\equiv 0\pmod{5},~a\equiv 4\pmod{5}\end{cases}$

$a^{a^a}-a^a\equiv\begin{cases}2\pmod{5},~a\equiv 2,18\pmod{20}\\0\pmod{5},~\text{otherwise}\end{cases}$

$a^{a^a}-a^a\equiv\begin{cases}2\pmod{10},~a\equiv 2,18\pmod{20}\\0\pmod{10},~\text{otherwise}\end{cases}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

3161

Threads

7941

Posts

610K

Credits

Credits
63780
QQ

Show all posts

 Author| hbghlyj Posted 2020-12-21 19:13
回复 4# tommywong
感谢解答!

Mobile version|Discuz Math Forum

2025-6-1 19:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit