|
Last edited by tommywong 2020-12-22 09:16$2\mid a(a-1)\Rightarrow 2\mid a^a(a^{a^a-a}-1)$
$a^a(a^{a^a-a}-1)\equiv\begin{cases}
a^0 (a^{0^a-0}-1)\equiv 0\pmod{5},~a\equiv 0\pmod{4}\\
a^1 (a^{1^a-1}-1)\equiv 0\pmod{5},~a\equiv 1\pmod{4}\\
a^2 (a^{2^a-2}-1)\equiv a^2 (a^{0-2}-1)\equiv a^2(a^2-1)\pmod{5},~a\equiv 2\pmod{4}\\
a^3 (a^{3^a-3}-1)\equiv a^3 (a^{3^1-3}-1)\equiv 0\pmod{5},~a\equiv 3\pmod{4}\end{cases}$
$a^2(a^2-1)\equiv\begin{cases}
0^2(0^2-1)\equiv 0\pmod{5},~a\equiv 0\pmod{5}\\
1^2(1^2-1)\equiv 0\pmod{5},~a\equiv 1\pmod{5}\\
2^2(2^2-1)\equiv 2\pmod{5},~a\equiv 2\pmod{5}\\
3^2(3^2-1)\equiv 2\pmod{5},~a\equiv 3\pmod{5}\\
4^2(4^2-1)\equiv 0\pmod{5},~a\equiv 4\pmod{5}\end{cases}$
$a^{a^a}-a^a\equiv\begin{cases}2\pmod{5},~a\equiv 2,18\pmod{20}\\0\pmod{5},~\text{otherwise}\end{cases}$
$a^{a^a}-a^a\equiv\begin{cases}2\pmod{10},~a\equiv 2,18\pmod{20}\\0\pmod{10},~\text{otherwise}\end{cases}$ |
|