Forgot password
 Register account
View 1323|Reply 2

一道累次积分小题

[Copy link]
青青子衿 posted 2020-12-20 15:14 |Read mode
Last edited by 青青子衿 2020-12-20 20:21\begin{align*}
\int_0^u\dfrac{{\mathrm{d}}v}{\sqrt{u-v}}\int_0^v\dfrac{f'(w)}{\sqrt{v-w}}{\mathrm{d}}w=\pi\Big[f(u)-f(0)\Big]
\end{align*}

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2020-12-21 12:00
回复 1# 青青子衿

换个积分次序就完事了啊...
\[原式=\int_0^uf'(w)dw\int_w^u\frac{dv}{\sqrt{(u-v)(v-w)}}\]
\[=\int_0^uf'(w)dw\cdot\left[2\arctan(\frac{\sqrt{v-w}}{\sqrt{u-v}})|_w^u\right]\]
\[=\int_0^uf'(w)dw\left[2\lim_{v\to u^-}\arctan(\frac{\sqrt{v-w}}{\sqrt{u-v}})\right]\]
\[=\pi\int_0^uf'(w)dw=\pi[f(u)-f(0)]\]
original poster 青青子衿 posted 2021-4-4 22:21
Proof regarding double integral
math.stackexchange.com/questions/4015137

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:53 GMT+8

Powered by Discuz!

Processed in 0.013187 seconds, 23 queries