Forgot password?
 Create new account
View 1197|Reply 2

一道累次积分小题

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-12-20 15:14:43 |Read mode
Last edited by 青青子衿 at 2020-12-20 20:21:00\begin{align*}
\int_0^u\dfrac{{\mathrm{d}}v}{\sqrt{u-v}}\int_0^v\dfrac{f'(w)}{\sqrt{v-w}}{\mathrm{d}}w=\pi\Big[f(u)-f(0)\Big]
\end{align*}

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2020-12-21 12:00:38
回复 1# 青青子衿

换个积分次序就完事了啊...
\[原式=\int_0^uf'(w)dw\int_w^u\frac{dv}{\sqrt{(u-v)(v-w)}}\]
\[=\int_0^uf'(w)dw\cdot\left[2\arctan(\frac{\sqrt{v-w}}{\sqrt{u-v}})|_w^u\right]\]
\[=\int_0^uf'(w)dw\left[2\lim_{v\to u^-}\arctan(\frac{\sqrt{v-w}}{\sqrt{u-v}})\right]\]
\[=\pi\int_0^uf'(w)dw=\pi[f(u)-f(0)]\]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2021-4-4 22:21:14
Proof regarding double integral
math.stackexchange.com/questions/4015137

手机版Mobile version|Leisure Math Forum

2025-4-21 14:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list