Forgot password?
 Register account
View 2392|Reply 14

[不等式] 求助一个不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2020-12-27 13:47 |Read mode
若$a,b,c>0$,求证:$\dfrac{a}{\sqrt{7a^2+b^2+c^2}}+\dfrac{b}{\sqrt{a^2+7b^2+c^2}}+\dfrac{c}{\sqrt{a^2+b^2+7c^2}}\leqslant  1$。
如何证明?
琴生不等式能证不?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-12-27 14:11
明显可以

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-12-27 18:52
回复 2# 色k
有空写下吗?麻烦你了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-27 18:55
等价于 `x,y,z>0,x+y+z=1,\sum\sqrt{x/(6x+1)}\le1`,这样就不需要我再写了吧

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-12-28 00:16
回复 4# kuing
不用琴生的证法我在别处看到。
想看看能否用琴生来证。
我试过一下,不等号搞出来是反向的
@kuing 你的证法是琴生吗?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2020-12-28 00:31
回复 5# lemondian

就是计算二阶导数而已啊,你检查下有没有计算错就好了

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-12-28 10:14
回复 6# 色k
好难求导呀,不知是不是这个?
$f'(x)=\frac{1}{2}\times \dfrac{1}{x^{\frac{1}{2}}(6x+1)^{\frac{3}{2}}}$,
$f''(x)=-\frac{1}{4}\times \dfrac{24x+1}{x^{\frac{3}{2}}(6x+1)^\frac{5}{2}}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-12-28 14:24
回复 7# lemondian

难算就别用了,这题用琴生算是大炮打蚊子,该不等式其实很弱,因为显然 x/(6x+1) 也是上凸的,也就是说可以放心放缩去根号,变成常规简单题。

比如说 `\frac a{\sqrt{7a^2+b^2+c^2}}\le\frac32(\frac19+\frac{a^2}{7a^2+b^2+c^2})`,或者 `\sum\frac a{\sqrt{7a^2+b^2+c^2}}\le\sqrt{3\sum\frac{a^2}{7a^2+b^2+c^2}}`,然后随便玩……

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2020-12-28 21:08
是2020摩尔多瓦的题?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-1-3 13:36
另一个不等式
10301.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-3 15:31
回复 10# lemondian

这不等式也太……弱……首先由条件知 `\sum a^3\geqslant\sum a^2\geqslant\sum a=3`,于是
\[\LHS\geqslant\frac{(\sum a^3)^2}{\sum a^2+2\sum a^3}\geqslant\frac13\sum a^3\geqslant1.\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-1-9 16:50
回复 11# kuing
谢谢kuing的解答!
有两个问题:
(1)首先由条件知这个不等关系不懂    ,可否写详细点?
(2)看似这个不等式可以推广到n元?又如何证?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-9 18:21
回复 12# lemondian

切比雪夫

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2021-1-9 22:28
回复 13# kuing
不好意思,第一次听说"切比雪夫"这个不等式!
好象关键是证得$\sum a^3\geqslant\sum a $
用两次柯西好象就可以了:(不知对不对?@kuing)
由柯西不等式:$\sum a\sum a^3\geqslant (\sum a^2)^2\geqslant \dfrac{(\sum a)^4}{9}$;
所以$\sum a^3\geqslant \sum a$.
从而有$(\sum a^3)^2\geqslant \sum a\sum a^3\geqslant (\sum a^2)^2$,两边开方,即得$\sum a^3\geqslant\sum a^2 $.
下同#11.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-9 23:02
回复 14# lemondian

切比雪夫不等式是排序不等式的推论,见:baike.baidu.com/item/切比雪夫总和不等式/797794

由此立得 `\sum a^3\ge\frac13\sum a\sum a^2=\sum a^2\ge\frac13\sum a\sum a`。

同理:若 `a_i>0`, `1\le i\le n`, `\sum a_i=n`, `m>0`,则 `\sum a_i^{m+1}\ge\sum a_i^m`。

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit