Last edited by hbghlyj 2021-1-10 11:39A,B,C,D为复平面上四个不同的点,$\Delta=\left(a-d\right)b^\ast+\left(a-d\right)^\ast c$,求证:AD∥BC⇔Δ∈ℝ.
证明:AD∥BC⇔$\frac{a-d}{\left|a-d\right|}=\pm\frac{b-c}{\left|b-c\right|}$⇔(两边平方)$\frac{a-d}{(a-d)^\ast}=\frac{b-c}{b^\ast-c^\ast}$⇔$\left(a-d\right)b^\ast+\left(a-d\right)^\ast c=\left(a-d\right)c^\ast+\left(a-d\right)^\ast b$⇔Δ=Δ*⇔Δ∈ℝ.