Forgot password?
 Register account
View 1954|Reply 6

[几何] 复平面上的梯形的条件

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-12-29 21:37 |Read mode
Last edited by hbghlyj 2021-1-10 11:39A,B,C,D为复平面上四个不同的点,$\Delta=\left(a-d\right)b^\ast+\left(a-d\right)^\ast c$,求证:AD∥BC⇔Δ∈ℝ.
证明:AD∥BC⇔$\frac{a-d}{\left|a-d\right|}=\pm\frac{b-c}{\left|b-c\right|}$⇔(两边平方)$\frac{a-d}{(a-d)^\ast}=\frac{b-c}{b^\ast-c^\ast}$⇔$\left(a-d\right)b^\ast+\left(a-d\right)^\ast c=\left(a-d\right)c^\ast+\left(a-d\right)^\ast b$⇔Δ=Δ*⇔Δ∈ℝ.

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2021-1-8 14:45
平行的条件.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-1-8 15:25
回复 2# TSC999
谢谢解答!!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-1-10 11:38
通过对#2的学习,将解答简化并整理到了#1

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-1-10 12:06
还有一道
ABCD是等腰梯形$\Leftrightarrow(a-d) b^*+(a-d)^* c=|a|^2-|d|^2$

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2021-1-11 14:16
Last edited by TSC999 2021-1-11 14:45回复 5# hbghlyj
求证: 由 ABCD 是等腰梯形(AD//BC) 可推出 $(a-d)b^*+(a-d)^*c=|a|^2-|d|^2 $   ------------(4)
同样也有对称公式  $(b-c)a^*+(b-c)^*d=|b|^2-|c|^2 $。
证明方法是,设 AD 的中点是 E,BC 的中点是 F,那么 D 点的镜像就是 A,由此可导出:
$ a1 b1 + a1 c1 + a2 b2 + a2 c2 - b1 d1 - b2 d2 - c1 d1 - c2 d2 =
  a1^2 +a2^2 - d1^2 -d2^2  $   -----------------(5)
(4) 式左边展开得 $ (a1 b1 + a1 c1 + a2 b2 + a2 c2 - b1 d1 - b2 d2 - c1 d1 - c2 d2) -
  I (a1 b2 - a1 c2 - a2 b1 + a2 c1 + b1 d2 - b2 d1 - c1 d2 + c2 d1); $ --------------(6)
(6)式的虚部就是 2# 楼中的公式 (2),等于零,这表明 (4) 式左边是一个实数,它等于
$  a1 b1 + a1 c1 + a2 b2 + a2 c2 - b1 d1 - b2 d2 - c1 d1 - c2 d2  $
上式正是 (5) 式的左边,而 (5) 式的右边等于 (4) 式的右边,从而得出
    $(a-d)b^*+(a-d)^*c=|a|^2-|d|^2 $。

至于 (5) 式是如何导出的? 见下页图片。

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2021-1-11 14:50
附图.png

Mobile version|Discuz Math Forum

2025-5-31 11:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit