Forgot password
 Register account
View 1154|Reply 3

[概率/统计] 请教一个概率问题

[Copy link]

206

Threads

270

Posts

1

Reputation

Show all posts

hjfmhh posted 2021-1-1 09:56 |Read mode
概率.png

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2021-1-1 11:13
回复 1# hjfmhh


这里定义一下,比赛双方必须打满全部$2n+1$局,当一方恰好赢得$n+1$场获胜时,称为“险胜”,以大于$n+1$场胜利时,称“大胜”

故此有
\[P_n(甲险胜)=C^{n+1}_{2n+1}p^{n+1}(1-p)^n\]
\[P_n(乙险胜)=C^{n+1}_{2n+1}p^{n}(1-p)^{n+1}\]
\[P_n(甲胜)=P_n(甲险胜)+P_n(甲大胜)\]

另一方面,如果此时多打两场,会有
\[P_{n+1}(甲胜)=P_n(甲大胜)+P_n(甲险胜)\cdot(2p(1-p)+p^2)+P_{n}(乙险胜)\cdot p^2\]
\[P_{n+1}(甲胜)=P_n(甲胜)-P_n(甲险胜)+P_n(甲险胜)\cdot(2p(1-p)+p^2)+P_{n}(乙险胜)\cdot p^2\]
\[=P_n(甲胜)+P_n(甲险胜)(2p-2p^2+p^2-1)+P_{n}(乙险胜)\cdot p^2\]
\[=P_n(甲胜)-P_n(甲险胜)(1-p)^2+P_{n}(乙险胜)\cdot p^2\]
\[=P_n(甲胜)-C^{n+1}_{2n+1}p^{n+1}(1-p)^{n+2}+C^{n+1}_{2n+1}p^{n+2}(1-p)^{n+1}\]
\[=P_n(甲胜)+C^{n+1}_{2n+1}p^{n+1}(1-p)^{n+1}(2p-1)\]
当$p>\frac{1}{2}$时后面是正的,因此会有
\[P_{n+1}(甲胜)>P_n(甲胜)\]

Comment

看懂了,好办法  posted 2025-2-5 12:06

206

Threads

270

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2021-1-1 19:58
回复 2# 战巡


    谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:08 GMT+8

Powered by Discuz!

Processed in 0.014596 seconds, 29 queries