Forgot password?
 Register account
View 1806|Reply 8

[函数] 一道将错就错的最值题目

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-1-12 14:16 |Read mode
实数$x,y>0$,则$\frac{(2x+1)(y+2)}{2x^2+5y^2+7}$的最大值为___,如果不限定$x,y$正负,你能求出最小值吗?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2021-1-12 14:23
为什么说将错就错?

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2021-1-12 15:40
回复 2# 色k

原题y+1 改成y+2 数字略难看一些

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-12 18:02
回复 3# facebooker

那也不算是错啊,还好了,也没出现根号,不算很难看……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-12 18:08
最大值:
\[\frac{(2x+1)(y+2)}{2x^2+5y^2+7}=\frac{11}{14}-\frac{2(11x-7y-14)^2+3(13y-7)^2}{154(2x^2+5y^2+7)};\]最小值:
\[\frac{(2x+1)(y+2)}{2x^2+5y^2+7}=-\frac12+\frac{2(x+y+2)^2+3(y-1)^2}{2(2x^2+5y^2+7)}.\]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2021-1-12 18:45
老哥 你这神配方咋想出来的啊?
另外 这题有没有柯西不等式之类的常规解法呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-1-12 21:18
回复 6# facebooker

这配方当然是先通过别的方法计算出答案之后再凑出来的装逼解法啊

0

Threads

17

Posts

322

Credits

Credits
322

Show all posts

mowxqq Posted 2021-2-21 11:23
回复 6# facebooker


    $\begin{split}\dfrac{2xy+4x+y+2}{2x^2+5y^2+7}=&\dfrac{2xy+4x+y+2}{\left(\dfrac{14}{33}x^2+\dfrac{42}{11}y^2\right)+\left(\dfrac{52}{33}x^2+\dfrac{588}{143}\right)+\left(\dfrac{13}{11}y^2+\dfrac{49}{143}\right)+\dfrac{28}{11}}\\\le&\dfrac{2xy+4x+y+2}{\dfrac{28}{11}xy+\dfrac{56}{11}x+\dfrac{14}{11}y+\dfrac{28}{11}}=\dfrac{11}{14},\end{split}$
分母中的系数可以先待定一下根据比例算出来,但是这个数字有点点麻烦,我还是选择先看ku版的配方再回来写系数

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2021-2-21 12:33
两次判别式就行。令 $t=(2x+1)(y+2)/(2x^2+5y^2+7)$,得 $5ty^2-(2x+1)y+2tx^2-4x+7t-2=0$,这个关于 $y$ 的一元二次方程的判别式为 $(2x+1)^2-4\cdot 5t\cdot (2tx^2-4x+7t-2)=4(1-10t^2)x^2+4(1+20t)x+1+40t-140t^2\geqslant 0$,$4(1-10t^2)x^2+4(1+20t)x+1+40t-140t^2=0$ 这个关于 $x$ 的一元二次方程的判别式 $(4(1 + 20 t))^2-4(4(1-10 t^2))(1+40t-140t^2)=-800t^2(2t+1)(14t-11)\geqslant 0$

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit