|
Ⅰ$-1\le x<0<y\le z$,x+y+z=1,求证
\[\frac{8x}{yz}+\frac{8y}{zx}+\frac{8z}{xy}+\frac{1}{x^2y^2z^2}+9\geq\frac{30}{xyz}\]
Ⅱx,y,z>0,x+y+z=1,证明
\[\frac{{5x}}{{{y^2}{z^2}}} + \frac{{5y}}{{{z^2}{x^2}}} + \frac{{5z}}{{{x^2}{y^2}}} + \frac{{16}}{{xyz}}\left( {\frac{1}{{{{(x + y)}^2}}} + \frac{1}{{{{(y + z)}^2}}} + \frac{1}{{{{(z + x)}^2}}}} \right) \ge \frac{9}{{xyz}} + \frac{{198}}{{{x^3} + {y^3} + {z^3}}}\] |
|