|
Last edited by hbghlyj 2022-4-25 20:30△ABC的内心为I,外心为O,点E,F分别在射线CA,BA上,使BF=CE=BC,求证
(1)OI⊥EF
(2)当A在⊙O上运动时,EF:OI不变
证明
(1)取AC中点Mb,取AC上的内切圆切点Tb,则$OE^2=OMb^2+EMb^2=R^2\cos^2{B}+\left(\frac{b}{2}-a\right)^2=R^2-ab+a^2,IE^2=ITb^2+ETb^2=r^2+\left(\frac{a-b+c}{2}\right)^2$⇒$OE^2-IE^2=R^2-r^2+\frac{3a^2-b^2-c^2-2a\left(b+c\right)+2bc}{4}$⇒$OE^2-IE^2=OF^2-IF^2⇒OI⊥EF$
(2)对△AEF用余弦定理,\begin{aligned}
\frac{EF^2}{OI^2}=&4\frac{\sin^2{A}\left(3-2\cos{A}\right)+2\sin{A}\left(\sin{B}+\sin{C}\right)\left(\cos{A}-1\right)}{3-2\left(\cos{A}+\cos{B}+\cos{C}\right)}\\
=&4\frac{\sin^2{A}\left(3-2\cos{A}\right)-8\sin{A}\cos{\frac{A}{2}}\cos{\frac{B-C}{2}}\sin^2{\frac{A}{2}}}{3-2\left(\cos{A}+\cos{B}+\cos{C}\right)}\\
=&4\frac{\sin^2{A}\left(3-2\cos{A}\right)-4\sin^2{A}\cos{\frac{B-C}{2}}\cos{\frac{B+C}{2}}}{3-2\left(\cos{A}+\cos{B}+\cos{C}\right)}\\
=&4\frac{\sin^2{A}\left(3-2\cos{A}\right)-2\sin^2{A}\left(\cos{B}+\cos{C}\right)}{3-2\left(\cos{A}+\cos{B}+\cos{C}\right)}\\
=&4\sin^2{A}
\end{aligned}
⇒$\frac{EF}{OI}=2\sin{A}.$ |
|